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Abstract: Piezoelectric actuators are often employed in micro- and nanopositioning devices due
to their extremely fine positioning resolution but exhibit strong nonlinear effects (predominantly
hysteresis and creep) which pose a considerable challenge for the control community. For online
compensation of these effects, the modified Prandtl-Ishlinskii model is particularly suitable since
its inverse can be found analytically by a parameter transformation. However, this model-based
approach has not yet made its way to devices that target positioning tasks. Therein, trajectories
typically contain segments with varying final times, small ranges of motion, or stationary
states such that the hysteresis and creep effects are not optimally excited and frequency-
dependence is induced which ultimately leads to a deteriorated compensation performance.
This paper proposes an online approach to overcome the problem by taking into account prior
hysteresis/creep information in a recursive manner based on databases for better tracking
performance and a more robust compensation of the aforementioned nonlinearities. In order
to show the efficacy of the proposed approach, experimental results are provided by using
trajectories with varying final times, stationary states and alternating small/large ranges of
motion on a micro-positioning unit driven by piezoelectric actuators.

Keywords: Hysteresis, Compensation, Actuators, Microsystems, Nonlinear systems

1. INTRODUCTION

In the field of micro- and nanorobotics, a variety of phys-
ical actuation principles can be utilized to achieve dis-
placement on small scales. Most actuators in this field
rely on electrostatic, electromagnetic, electrothermal or
piezoelectric principles, see Nelson et al. (2008).
Piezoelectric actuators are a popular choice due to their
(sub)nanometer level resolution, highly dynamic behav-
ior, large blocking force, high mechanical stiffness, and
compact size (Xu and Tan (2015)) and have been em-
ployed in diverse applications from machining such as
milling (Gozen and Ozdoganlar (2012)) or grinding (Tian
et al. (2011)) to scanning probe microscopy (Clayton et al.
(2009)). However, the downside of piezoelectric actuators
are strong hysteresis and creep effects that arise due to
inherent material characteristics of the piezoelectric crys-
tals. Model-based control approaches are able to tackle
these problems by feedforward compensation through an
inverse model. For this, hysteresis and creep effects need
to be modeled explicitly first.
Creep can be either modeled linearly e.g. by a series inter-
connection of mass-spring-damper systems, see Croft et al.
(2001) or in a nonlinear form through the application of
logarithmic terms, see Jung and Gweon (2000). Hystere-
sis models are typically classified into physics-based and
phenomenological models, see Gu et al. (2016). Physics-
based models attempt to relate the observed hysteresis

effects to concrete physical parameter and establish a
dynamic model thereafter. The most prominent example
for this class is the Jiles-Atherton model, see Rosenbaum
et al. (2010). Phenomenological models are independent
from the physical model and can be further subdivided
into differential-based models, operator-based hysteresis
models and other hysteresis models such as ellipse-based
models (Gu and Zhu (2011)) or neuronal networks (Zhao
and Tan (2008)). While differential-based models aim to
model hysteresis behavior explicitly via differential equa-
tions (Visintin (2013)), operator-based hysteresis models
establish a model by superposition of individual elemen-
tary operators. For this, these operators are first weighted
and then superposed in order to yield the desired over-
all hysteresis model. The Preisach model (Natale et al.
(2001)) employs relay operators as elementary operators
(see Mayergoyz (2003)) and the Krasnosel’skii-Pokrovskii
model (Galinaitis (1999)) is a straightforward extension of
this model utilizing generalized relay operators.
For the control of a piezoelectric actuator, not only miti-
gation of nonlinear effects is desired but also capabilities
that allow for online compensation of said effects, essen-
tially linearizing the actuator at run-time. Here is where
the shortcomings of the aforementioned hysteresis models
become evident since analytical solutions for the respective
inverse models are computationally too expensive for on-
line and real-time applications and therefore have to resort
to numerical inverse solutions, see e.g. Song et al. (2005).
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The Prandtl-Ishlinskii model can be a remedy due to
having an analytical inverse and furthermore its modified
version can even cope with asymmetries in the hystere-
sis. However, trajectories considered in existing literature
following this approach are specially designed to excite
hysteresis and creep simultaneously and resulting models
are tested against these. Furthermore, cycle times for com-
pensation and periodicity of the trajectories coincide.
For real-life applications, such as e.g. pick-and-place tra-
jectories in assembly processes, this is not useful since
the trajectories may only excite one nonlinear effect and
even only to a small extent. In this paper, we provide a
more robust approach for online compensation of nonlinear
piezoelectric effects that takes into account prior informa-
tion in a recursive way so that (at least some portion
of) information about the nonlinear effects is conserved.
Although recursive identification has already been cov-
ered for other models, such as the Preisach model (Tan
and Baras (2004)) or the Krasnosel’skii-Pokrovskii model
(Webb et al. (1998)), the novelty in the presented approach
lies in the recursive usage of databases.
The remainder of this paper is organized as follows. Sec. 2
outlines the hysteresis and creep model via the modi-
fied Prandtl-Ishlinskii model and in Sec. 3 its analytical
inverse is presented. Sec. 4 covers the novel recursive
online compensation algorithm via the modified Prandtl-
Ishlinskii model. In Sec. 5 the theory is applied to a micro-
positioning unit with a pick-and-place-like trajectory. Fi-
nally, a conclusion is given in Sec. 6.

2. HYSTERESIS AND CREEP MODELING

First, the mathematical model based on operators for
hysteresis and creep effects used in this paper is presented.
In the following sections, x(t) denotes the input signal of
the operators while y(t) denotes their output signal. For
implementation purposes, a time-discrete representation is
preferred such that x(t) = x(k) with timestep k ∈ N+

0 and
kTs ≤ t < (k + 1)Ts with sample time Ts. The sections
2 and 3 essentially follow Kuhnen (2008) and Pesotski
(2011).

2.1 Play Operator

The discrete elementary play operator is defined as

y(k) = HrH [x(k), y(k − 1)]

= max{x(k)− rH ,min{x(k) + rH , y(k − 1)}} (1)

with threshold rH parameterizing the width of the play
operator and corresponding initial condition

y(0) = HrH [x(0), yH0]

= max{x(0)− rH ,min{x(0) + rH , yH0}},
where yH0 is the initial state of the operator output.
In order to model more complex hysteresis behavior,
the dot product of a vector of n+1 elementary play
operators (from (1) for n+1 different thresholds) and
weight vector wH ∈ Rn+1 can be used. This leads to
the discretized version of the Prandtl-Ishlinskii-Hysteresis
operator defined as

Hδ[x(k),yH0] =

n∑
i=0

wHiHrHi
[x(k), yH0i]

= wT
HHrH [x(k),yH0] (2)

with threshold vector rH ∈ Rn+1 for n+1 elementary play
operators.

2.2 Superposition Operator

The Prandtl-Ishlinskii-Hysteresis operator would suffice
for symmetric hysteresis effects. However, in reality, most
actuators are characterized by slight asymmetries in the
hysteresis which the superposition operator addresses. The
discrete elementary superposition operator is defined as

SrS [x(k)] =


max{x(k)− rS , 0} for rS > 0

min{x(k)− rS , 0} for rS < 0

0 for rS = 0

with respective threshold rS . Again, with a set of weights
wS ∈ R2l+1 and thresholds rH ∈ R2l+1 this can be
generalized to the so-called discrete Prandtl-Ishlinskii-
Superposition operator

Sδ[x(k)] =

l∑
i=−l

wSiSrSi
[x(k)] = wT

SSrS [x(k)], (3)

where 2l+1 denotes the number of elementary superposi-
tion operators used for the model.

2.3 Creep Operator

In order to fit the aforementioned operator paradigm
for creep effects, Kuhnen (2005) presented a seamless
integration by an operator-based creep representation. The
discrete elementary creep operator is given as

KrK [x(k),yK0(rK)] =
1

m

m∑
j=1

KrKaK [x(k), yK0(rK , aKj)]

with threshold rK and m (sub-)elementary creep operators
KrKaK with respective creep eigenvalues

aKj =
1

10j−1Ts
for j = 1, ...,m

such that aK1 > aK2 > ...aKm > 0 holds. KrKaK can be
obtained analytically from a differential equation yielding
the solution

y(k) = y(k− 1) + (1− e−aKTs)HrK [x(k− 1)− y(k− 1), 0],

where

y(k) = KrKaK [x(k − 1), y(k − 1), aK ].

Next, the discrete Prandtl-Ishlinskii-Creep operator can
be defined (in analogy to (2) and (3)) as

Kδ[x(k),YK0] =

n∑
i=0

wKiKrKi
[x(k),yK0i]

= wT
KKrK [x(k),YK0]. (4)

2.4 Combined Model

Now, a unified model for hysteresis and creep effects can
be established by combining the operators from (2), (3),
and (4) as

Γ[x(k),yH0,YK0] = Sδ[Hδ[x(k),yH0] +Kδ[x(k),YK0]]

= wT
SSrS (wT

HHrH [x(k),yH0] (5)

+ wT
KKrK [x(k),YK0])

= wT
SSrS

(
wT
HKHHK [x(k),yH0,YK0]

)
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with wT
HK :=

(
wT
H ,w

T
K

)
and

HHK [x(k),yH0,YK0]) :=

(
HrH [x(k),yH0]
KrK [x(k),YK0]

)
.

Γ from (5) is known as the modified Prandtl-Ishlinskii
operator.

3. INVERSE MODEL

As already mentioned in Sec. 1, the (modified) Prandtl-
Ishlinskii model allows for an analytical inverse since the
model is identical except for its weights and thresholds.
For the inverse operators, the weights, thresholds, and
initial conditions can be derived by an algebraic parameter
transformation. This will be outlined in more detailed in
the following.

3.1 Inverse Play Operator

The inverse play operator is defined as

H−1δ [y(k), z′H0] = w′TH Hr′
H

[y(k), z′H0]

with corresponding weights

w′H0 = w−1H0

w′Hi =
wHi(

i∑
j=0

wHj

)(
i−1∑
j=0

wHj

) for i = 1, ..., n

and thresholds

r′Hi =

i∑
j=0

wHj(rHi − rHj) for i = 0, ..., n.

For the inverse play operator the corresponding initial
conditions z′H0 are needed which are defined as

z′H0i =

i∑
j=0

wHjzH0i +

n∑
j=i+1

wHjzH0j , for i = 0, ..., n.

3.2 Inverse Superposition Operator

Similarly, the inverse superposition operator

S−1δ [y(k)] = w′TS Sr′
S
[y(k)]

takes the form of (3) with corresponding weights defined
as

w′Si =
wSi(

wS0 +
−1∑
j=i

wSj

)(
wS0 +

−1∑
j=i+1

wSj

)
for i = −l, ...,−1, w′S0 = 1

wS0
, and

w′Si =
wSi(

wS0 +
i∑

j=1

wSj

)(
wS0 +

i−1∑
j=1

wSj

)
for i = 1, ..., l. The respective thresholds are

r′Si =

0∑
j=i

wSj(rSi − rSj) for i = −l, ...,−1 and

r′Si =

i∑
j=0

wSj(rSi − rSj) for i = 1, ..., l

with r′S0 = 0.

3.3 Inverse Combined Model

Now, it is possible to combine the inverse operators to
obtain a combined inverse modified Prandtl-Ishlinskii op-
erator Γ−1[y(k),y′H0,Y

′
K0] as

x(k) = Γ−1[y(k),y′H0,Y
′
K0]

= H−1δ
[
S−1δ [y(k)]−Kδ[x(k),YK0],y′H0

]
. (6)

It should be noted that this shows that there is no necessity
to invert the creep operator.

4. RECURSIVE ONLINE COMPENSATION

In this section, a novel cost function is introduced taking
recursive information into account from which a quadratic
optimization problem can be derived. Solving this problem
yields the weights for online compensation of piezoelectric
nonlinearities. Fig. 1 depicts the block diagram for the
compensation structure.

Trajectory
Planner

Compensator
Piezo-
actuator

Online-
identification

Linearization

y

w
yd x

Fig. 1. Block diagram of feedforward compensation struc-
ture with weight adaption. Desired values yd are gen-
erated by a trajectory planner.

4.1 Cost Function with Recursive Information

The continuous cost function with recursive information is
defined as

V (tf ) =

Nt−1∑
i=0

∫ tf−i

tf−i−1

E2(t) dt (7)

with initial time t0 = tf−Nt and final time tf such
that the interval is partitioned in Nt ≥ 1 databases as
[t0, t1, ..., tf ] ∈ RNt+1 which are considered for optimiza-
tion. Here, each database has a fixed length consisting of
Nk data points 1 . The error E is composed of the differ-
ence between model output of (5) and actuator output as
follows

E(k) = Hδ[x(k)] +Kδ[x(k)]− S−1δ [y(k)]

and can be rearranged into linear form

E(k) = x(k) + wTΦ[x(k), y(k)] (8)

with

w =

 w̃H

w′S
wK

 , Φ[x(k), y(k)] =

 H̃rH [x(k)]
−Sr′

S
[y(k)]

KrK [x(k)]

 ,

and

wH =

(
1

w̃H

)
, H̃rH =

 HrH1
[x(k)]
...

HrHn
[x(k)]

 .

1 Of course databases with different lengths could be considered,
but this is straightforward and would only make the notation
cumbersome.
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The squared error E2 obtained from (8) is

E2(k) = wTΦ(k)ΦT (k)w + 2x(k)ΦT (k)w + x2(k),

such that the discretized version of the recursive cost
function (7) reads

V =
1

2

Nt−1∑
i=0

(i+1)Nk∑
k=iNk

E2(k)

=

Nt−1∑
i=0

{
1

2
wT

(i+1)Nk∑
k=iNk

Φ(k)ΦT (k)︸ ︷︷ ︸
=:Ai

w+

(i+1)Nk∑
k=iNk

x(k)ΦT (k)︸ ︷︷ ︸
=:bT

i

w +
1

2

(i+1)Nk∑
k=iNk

x2(k)︸ ︷︷ ︸
=:ci

}

=

Nt−1∑
i=0

{
1

2
wTAiw + bTi w +

1

2
ci

}

=
1

2
wT

Nt−1∑
i=0

Ai︸ ︷︷ ︸
=:Ai+1

w +

Nt−1∑
i=0

bTi︸ ︷︷ ︸
=:bT

i+1

w +
1

2

Nt−1∑
i=0

ci︸ ︷︷ ︸
=:ci+1

. (9)

4.2 Optimization Problem

From (9), the recursive rule

Ai+1 =

Nt−1∑
i=0

Ai, bi+1 =

Nt−1∑
i=0

bi

is derived for the quadratic optimization problem

min
w

1

2
wTAi+1w + bTi+1w

with corresponding linear inequality constraints 2 . This is
an extension to existing algorithms in literature which only
consider Nt = 1 (i.e. one database).

5. EXPERIMENTAL VERIFICATION

Next, experimental verification of the recursive online
compensation is provided.

5.1 Description of Experimental Setup

The piezoelectric micro-positioning unit XYZ200M from
Cedrat Technologies with 3 degrees of freedom is used for
experimental verification, see Fig. 2a. The X- and Y -axes
follow antagonistic design, i.e. two opposing piezoelectric
actuators for each of axis, respectively (see Fig. 2b). This
enhances point-symmetry of the hysteresis curve. The Z-
axis is actuated by three piezoelectric actuators placed
in circular manner. Therefore, there are seven piezoelec-
tric actuators in total, where each actuator consists of
two stacks of piezoelectric ceramics in order to amplify
displacement. Each actuator is furthermore preloaded by
an external spring shell made of stainless steel also pro-
tecting e.g. against tensile stress, see Fig. 2c. The unit

2 For sake of brevity, the interested reader is referred to Kuhnen
(2008) for a detailed derivation of the inequality constraints.

O1

Real-time System

Non-real-time
System

∆tA1 ∆tA2 ∆tA3 ∆tA4

A1 A2 A3 A4

B1 B2 B3

O2 O3

Fig. 3. Schematic depiction of data acquisition phase (A),
building of (recursive) database (B), and optimization
phase (O) on real-time system and non-real-time
system.

weighs about 540 g with a nominal displacement of 200µm
(nanoscopic resolution of 2 nm) and a nominal blocked
force of 118 N in each Cartesian direction.
A National Instruments PXI real-time system is used to
command voltage input and access strain-gauge measure-
ments via a digital I/O interface with 1 kHz sampling fre-
quency. The commanded voltage is furthermore amplified
by a voltage amplifier by a factor of 20 and is then equally
applied across each piezoelectric ceramic stack (i.e. four for
the X- and Y -axes, six for the Z-axis), only one stack per
axis is equipped with a strain gauge sensor, respectively.
Measurement data is acquired on the real-time system
(A) while building the (recursive) database (B) as well
as optimization of the recursive cost function (O) takes
place on a non-real-time system, see Fig. 3. The reasons
for this division of labor is that the optimization leads to
computationally intensive calculations that would violate
real-time constraints on the real-time system. The weights
from the optimization procedure are continuously trans-
fered to the real-time system for compensation purposes.

5.2 Choice of Trajectory

For the subsequent experiments, trajectories comprised
of quintic polynomials and stationary states in an alter-
nating manner are used. Such trajectories are typically
employed in pick-and-place tasks where a smooth tran-
sition between two points is desired and sufficient time
for gripping/releasing an object is necessary meaning the
tool center point must be at rest for a certain amount of
time. Such stationary states are especially problematic for
the identification of hysteresis effects and hence for their
compensation since they do not excite the actuator over a
certain (larger) range of motion. In contrast, creep effects
are minimally excited when a smooth trajectory without
stationary states is executed. Furthermore, final time of
the polynomials is varied which alters the frequency of the
input signal.
The following results are shown for the X-axis of the
micro-positioning unit without loss of generality and the
theory can be applied to the other axes in a straightfor-
ward fashion.

5.3 Results for Final States yd,f ∈ {−3, 0, 3} [V ]

In Fig. 4 a trajectory of the aforementioned type is
commanded as desired trajectory. Therein, Nk = 1000 (i.e.
a database length of one second) is chosen. For the case
of one database, Nt = 1 (blue), there is not sufficient
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(a) Piezoelectric micro-positioning unit (b) Schematic cross-section (c) Single piezoelectric actuator of Z-axis

Fig. 2. Piezoelectric micro-positioning unit with 3 degrees of freedom (a), schematic cross-section of X-Y -plane (b), and
close up view of a single actuator (c).

time for the convergence of weights which results in
undesired oscillation (at t≈ 5.6 s) and therefore in an error
that furthermore propagates forward for each upcoming
optimization step. This induces a phase delay which does
not recover over time.

0 2 4 6 8 10

t[s]

-3

-2

-1

0

1

2

3

y
[V

]

yd
Nt = 1
Nt = 7

Fig. 4. Results for a pick-and-place-like trajectory with
Nk = 1000 for Nt = 1 (blue) and Nt = 7 (red). Vertical
gray lines indicate the beginning of a new database.

For multiple databases, Nt = 7, the result is a stable com-
pensator yielding satisfactory tracking performance.
In Fig. 5 (top) the database length is increased to
Nk = 4000 for the same trajectory. Here, both Nt = 1 and
Nt = 7 lead to a stable tracking performance with good
compensation results. However, a closer look at the track-
ing error (see Fig. 5 (middle)) reveals higher deviations
from the desired trajectory for Nt = 1 than for Nt = 7. This
is exemplified in close up views, see Fig. 5a-5f. Not only
does the recursive approach provide better tracking results
(see Fig. 5a and Fig. 5d-5f) but it is also less sensitive to
a newly incoming database (Fig. 5b-5c). Evaluating the
normalized root mean square error (NRMSE)

NRMSE(yd, y) =
‖yd − y‖2
‖yd‖2

(10)

yields 0.0340 for Nt = 1 and 0.0336 for Nt = 7, i.e. an
increase of 1.33 % in tracking performance.

5.4 Results for Final States yd,f ∈ {−3,−1, 0, 1, 3} [V ]

In Fig. 6, certain segments of the trajectory do not traverse
the full range of motion of the piezoactuator and therefore

hysteresis characteristics are not optimally excited. This is
especially problematic when a small database is chosen, see
here Nk = 1000 without taking into account prior informa-
tion. At t= 11 s when the full range of motion is traversed
for the first time after passages with a lower range of mo-
tion, the subsequent compensation is not satisfactory and
results in a large tracking error. In contrast, when choosing
the recursive approach with consideration of prior informa-
tion, good compensation results can be observed. Further-
more, a small database can lead to oscillating behavior
(c.f. t∈ [18, 19] and t∈ [20, 21]) which may destabilize the
system as already seen in Fig. 4. The compensation does
not suffer from the aforementioned problems by choosing
a larger database (here Nk = 4000). However, due to the
acquisition phase being longer, there is no compensation at
the beginning of the trajectory (c.f. t∈ [0, 4]) as compared
to a small database with recursive approach. Here, the
NMRSE without recursive online approach is 0.0736 for
Nk = 1000 and 0.0675 for Nk = 4000, and for the recursive
online approach 0.0397, i.e. the recursive approach results
in an 46.02 % improvement as compared to the approach
with one database of length Nk = 1000 and 41.16 % as
compared to Nk = 4000 using the NRMSE.

6. CONCLUSION

In this paper, a recursive online compensation via the
modified Prandtl-Ishlinskii model has been proposed. By
taking into account prior information in the construction
of a database, changes in the nonlinear effects are han-
dled more robustly. This becomes evident when a newly
incoming database contains different information in the
hysteresis/creep composition than the prior one. Further-
more, the overall tracking performance has increased by
taking into account multiple smaller databases. Although
in principle this could also be achieved by taking large
databases, this decreases reaction time and databases over
longer time periods may contain greater changes in be-
tween two databases which would lead to larger changes
in the weights and potentially destabilize tracking due to
oscillating weight convergence.
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0 5 10 15 20 25 30

t[s]

-3

-2

-1

0

1

2

3

y
[V

]

yd
Nt = 1
Nt = 7

(a)

(b)

(c)

(d)

(e)

(f)

0 5 10 15 20 25 30

t[s]

-0.4

-0.2

0

0.2

y
d
-y
[V

]

Nt = 1
Nt = 7

(a)

(b)

(c)

(d)
(e)

(f)

(a) (b) (c) (d) (e) (f)

Fig. 5. Experimental results for trajectories with final states yd,f ∈ {−3, 0, 3}. Tracking (top) and tracking error (middle)
with close up views (5a-5f) for Nt = 1 (red) and Nt = 7 (blue).

2 4 6 8 10 12 14 16 18 20 22

-3

-2

-1

0

1

2

3

2 4 6 8 10 12 14 16 18 20 22

-0.4

-0.2

0

0.2

0.4

0.6

Fig. 6. Experimental results for trajectories with final states yd,f ∈ {−3,−1, 0, 1, 3}. Tracking (top) and tracking error
(bottom) for Nk = 1000, Nt = 7 (blue) and Nk = 1000, Nt = 1 (red) and Nk = 4000, Nt = 1 (yellow). Vertical gray
lines indicate the beginning of a new database for Nk = 1000 and vertical black lines for Nk = 4000.
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