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Robust wbratson control of dynamical systems based
on the derivative of the state

E. Reithmeier, G. Leitmann

Summary Vibrations may be undesirable in dynamical systems for several reasons. They
may affect the security, such as vibrations in primary cycle parts of (nuclear) power plants.
They may decrease the quality and functionality of products, such as those manufactured by
machine tools. And they may lower the comfort, such as vibrations in car wheel suspension
systems or in power trains of cars. One possibility to attenuate these vibrations is by em-
ploying active suspension elements. Mounted at appropriate places inside the systems or with
respect to their environment, they are able to interchange or dissipate kinetic and potential
energy in an effective way with moderate control effort. Their effectiveness depends greatly
on the control scheme applied to change damping and stiffness characteristics of the sus-
pension elements. The control schemes, however, very often need information on the state
variables involved in the mathematical modeling. On the other hand, it is mostly the ac-
celeration or speed of certain parts that can be sensed reasonably and measured with suf-
ficient accuracy. We propose here a control scheme which is solely based on the derivative of
the state variables, provided that active suspension elements or actuators with the above-
mentioned properties may be employed within the system. Furthermore, we only use control
actions within a discrete set of possible values, which aids the real-time implementation of
the designed control algorithms. And, last but not least, the number of control inputs
(actuators) may be arbitrary, that is, the system may be mismatched. The scheme is based on
the Lyapunov stability theory, which involves discontinuities of the Lyapunov function
candidates along trajectories of the state derivative. The effectiveness and behavior of the
control scheme is demonstrated on a two-DOF model of an active car seat suspension in
order to enhance the driving comfort.
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Introduction

The class of systems which we shall take into consideration may be described by a dynamical
system with a finite number of degrees of freedom (DOF). The structure has to contain “active”
suspension elements. We call suspension or coupling elements “active” if they are adjustable
with respect to their stiffness and damping behavior. Based on that model, we assume that a
control action is related to a change in these properties. The mathematical description of this
kind of structures is assumed to be of the form
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x=Ax+B(x)ute, x(t)=x . (1)

The linear part of the mathematical model is defined by the constant and stable matrix
A € R™, where n € N denotes the state-space dimension. The control input matrix

B(x) := By(x) + B, € R™™

may contain some constant part B; € R™™ and some part B,(x) € R™™, which is linear with
respect to x, where x € R” represents the n state variables; u € R™ represents the m control
variables. Furthermore, we will assume that only y := % is detectable via some appropriate
measurement device. The control variables have to be taken from the set

U:= {P : R — R™ | p](Y) € {uj,mimoﬂ uj,max} v ] =1..., m}a (2)

where p is supposed to be piecewise continuous with respect to the measured and/or observed
variable y. Without loss of generality and for the sake of convenience, we may assume that
#;min = —1 and ujmax = +1. The particular choice of control action p;(y) which either takes the
minimum value #; mis, 0 or the maximum value u;nax almost everywhere, is motivated by the
control design presented in [5]. All uncertainties and nonlinearities of the system are modeled
by some appropriate, at least piecewise differentiable function e(t). Its time derivative is as-
sumed to be bounded, that is,

le()f <e VieR, . (3)
holds for some properly chosen ¢ € R,.

2
Control design

For the controller design, we ask for a feedback controller u := p(y) which drives the measured
and/or observed variable y towards a ball of ultimate boundedness

By :={feR"|[I€l < o}

for some properly chosen real number p > 0. As a first step towards this objective, the time
derivative of Eq. (1) leads to

. ., d .
x=Ax+a[B(x)u] +eé. (4)
Taking into account

%{B(x)] - % [By(x) + By] = By (&) (5)

due to the linearity of B; with respect to x leads to

X=Ax+B(x)u+B(x)u+¢é . (6)
Since the components #; of u take the constant values #; min, 0 OT U max almost everywhere, that
is on open subsets of R”", except on measure-zero sets of R”, the time derivative of u = p(y)

along any solution ¢+ y(t) of Eq. (6) is zero for all p belonging to ¢/, provided chattering does
not occur on the (n — 1)-dimensional manifold

Hf = {YGRnlbj(Y)=0}, for aane{l?---am} 1 (7)

where b;(y) will be defined subsequently. Hence, we obtain

n
y=Ay+Bi(y)p(y) +é yeR" - JII; . (8)
=1
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This result enables us to return to the control-design procedure introduced in [5]. There we ask
for a feedback-control function p* €U, which - for an arbitrary but fixed positive-definite
matrix P € R™" - minimizes the “Lyapunov derivative”

L(p) = Y'PlAY + Bi(y)p+é] =Y P [AY + ijBl (y)ij + é] : (9
j=1

with respect to p € U for every (y.t) € (R" — U}f‘:1 IT;) x R.. Here, i; denotes the unit vector
with ifi; =0 for i # . In that case, the time derivative of the Lyapunov function candidate

V(y(5) =3 y(O"PY(®) (10)

will be as small as possible for any response ¢ y(t), admissible uncertainty é and time ¢, and
for all admissible choices of control p(y(t)). Eq. (9) can be written as

m
L) = ay) + D_smEy) + .1 (1)
j=1
with
aly) = —ky™Qy, where Q:=—(PA+ ATP) , (12)
bi(y) = y'PB,(y)ij, where iJ-Ti,c = Jjk
and
c(y, £) =y Pe(t) . ' (13)
Then, using the normalized control space U, we obtain
* _ -1 if b}(Y) > 0,
iy = {+1 if Bily) <0 - 4 (19

L

The performance of the controller may be enhanced additionally if we choose P appropriately.
The smaller the Lyapunov derivative, the stronger the “tendency o the origin” of t— y(t). Our
objective in that case would be to strive for a highly negative value a(y) in Eq. (11). That, on the
other hand, can be done by choosing a suitable positive-definite Q and solving the algebraic

Lyapunov equation

Q=—(PA+A'P) (15)

for P. Since A is assumed to be stable, the matrix P is positive-definite.

3

Stability

Using the control scheme developed in Sec. 2, it is possible to determine a sufficient con-
dition between parameters of the system and control design parameters for ultimate
boundedness with respect o some ball B, of any response t+y(t). In order to analyze this
situation, we employ, for any given positive-definite matrix P € R™", the controller p*(y), cf.
Eq. (13) in its corresponding Lyapunov derivative!. This leads to

11t is possible to deal with uncertain y measurements in the manner discussed in [12], here setting
pi{y) = 0 in an appropriate neighborhood of I1; for any j € {1,...,n}. n [12], 2 so-called fuzzy
controller is used making the controller a continuous function of ¥, thereby also precluding chattering.
However, this can not be done here in view of the discrete-valuedness of admissible contrel.




1 .
Lp*(y) = —57'Qy +y By (Y)p*(y) +y'Pe

1 = . .
=-3 TQy - y'PB,(y) (ZP}‘ (Y)lj) +y'Pé

=1

1 - .
= =5y Q= ) B +yPe . (16)
=1

Sihce y'Qy is a positive-definite quadratic form, it is bounded by the minimum and maximum
eigenvalues Apin{Q) and A (Q) of Q. That is,

Lp*(y)) < _%lmin(Q)”Y”z - i B ()l -+ iyl B2l flell (17)
=1

Neglecting the second term, employing inequality (3) and using the maximum eigenvalue -
Amax(P) of P one gets

L) € 5 min( QY + emex(®) Y] (18)
Thus, we obtain

Amax (P)
lmin (Q) )

The radius p of the ball of ultimate boundedness B, := {& € R" | ||&|| < p} is therefore de-
termined by

L'y <0 Vyl>r=2¢ (19)

Amax(P)
Amin (P) )

(20)

It should be noted that B,, with radius given in (20), is the ball of ultimate boundedness for
control actions u; = 0V}, since the terms E;'__l |b;(y)] were peglected in (18). These terms
reduce the right-hand side of (18), except at y where b;(y) = 0 for all j. Thus, control p*(y) has
two effects. It decreases the rate of change of the P-norm V(y), L{(p*(y)), and it increases the
region in which the negativity of £(p*(y)) is assured.

It should be noted that the control scheme (14) pertains to the open regions separated by
switching manifolds (7). For y{t) on a switching manifold IT;, the terms dependent on du/dt,
which is unbounded there, lead to Dirac-delta changes in y and V in the ideal model under
discussion.,

In practice, in a neighborhood of a switching point, rapid changes in y and V occur due to
control with “high” gain over a “short” time interval. In the stability analysis, we assumed that
the rapid changes experienced by the Lyapunov function V(y(t)) at a switch point of the
control are sufficiently small compared to the decrease in L(p(y)) between switch points, or
even benign, so that they can be ignored. This seems to be borne out by the simulation results,
but needs closer examination in general. We intend to investigate this phenomenon in sub-
sequent research,

Finally, it should be recalled that the proposed control scheme is “optimal” with respect to
the stability behavior of y(f) rather than x(t), although it may be expected that it also improves
the behavior of x(t), as it is borne out by simulations. For many systems of interest, the
accelerations of the system components can be measured directly via accelerometers.

The component velocities can then be obtained from integration which, of course, involves the
initial values of the velocities. In many cases, the system starts from rest, in which case these are
zero. If not, the unknown or uncertain initial velocity values introduce an offset error. How-
ever, this is still a great improvement over the situation of a control based on the state x. That
one involves two integrations, and since the measurements are still those of the component
accelerations, it greatly increases the errors due to lack of knowledge or uncertainty of the
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initial x. In addition, for many systems of interest, improving the behavior of accelerations and
velocities is of greater importance than the behavior of displacements.

4

Example: active suspension of a car seat :

Figure 1 shows a simplified model of an actively suspended seat in a car. The model consists of
a car mass M and driver-plus-seat mass m. Vertical vibrations caused by a rough street may be
partially attenuated by shock absorbers (stiffness ks and damping ca). Nonetheless, the driver
may still be subjected to undesirable vibrations. These vibrations, again, can be reduced by
appropriately mounted car seat suspension elements. The elastic mounts are considered to be
active with the stiffness ks(u) = ax + B u and the damping cs(u) = ac + B, u, where u is the
normalized and constrained control variable. That is, stiffness as well as damping can be varied
by changing the scalar variable u. The vertical displacement {(t} is considered to be unknown,
but possibly with a known bound. We assume that the accelerations & or # can be measured.
The velocities & and # are either also measured, or at least estimated from their measured time
derivatives. That yields the following matrices for the model according to Eq. (1):

0 0 1 0
0 0 0 1
A | —(harmy % _(iw) & 21
SRR M ol eV
m m m m
and
B(x) :=B;x+B; , (22)
where
0 0 0o 0 0
0 0 0 0 0
Bo= |8 & % K| B=|_ sl @)
B b B L n
m m m m EL&—S
m

Fig. 1. Model of an actively mounted
seat inside a car




The state vector is given by

= (é: ", &: ")T -

The ground excitation leads to

()= |4l +4c00) | . (24)

o+ oo

Simulations for x(£) and y(¢) are based on the original state Eq. (1) with control (14), which
depends on y := x, namely

X = Ax+ B(x)p*(y) +e{t) . (25)

The simulation results, cf. Figs. 2 and 3, are is based on the parameters g = 9.81 m/s? (grav-
itational constant), me = 1500 kg (mass of the car), mg = 100 kg (mass of the seat + driver),
ks =4-10* N/m (shock absorber stiffness), ¢4 = 4 - 10°> Ns/m (shock absorber damping),

o = 10* N/m, B, = 5- 10° N/m, o, = 102 Ns/m, B. = 5-10% Ns/m; 84 and &g are chosen in
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such a way, that the shock absorber elements are relaxed for (& — {) = 4 and the active seat
suspension elements are relaxed for (1 — &) == 5. That leads to

5o="% and 5A=L"}1M _ (26)
Ol ka

The ground excitation is taken to be harmonic, that is £{f) 1= { sin(w t), with amplitude

¢ :=0.03 m and a variable excitation frequency 10 Hz < w < 40 Hz. In order to measure the

effect of the employed controller, we integrate the state equation between time fo = 0 s and

t, = 10 s. After a settling time #; = 5 s, for the homogeneous parts of the state variables to be

practically damped out, we compute the mean value

Il = \/t—i—t- [ btoar @)

for the components x; of x as functions of the excitation frequency w. To demonstrate the
efficacy of the control in enlarging the region in which negativity of L(p(y)) is assured the
numerical integration of (25) was started with the initial condition x(to = 0) = 0. The values of
y{t) may be directly obtained from (25). Figure 2 shows the results with and without control for
the variables y, = & and y; = &. Figure 3 shows the results for the variables y; = # and y4 = i,
again with and without control. Although there is a slight deterioration of ¢ and ¢ between
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@ = 25 Hz and w = 33 Hz, the significant improvement of # and # prevails. In addition, Fig. 4
shows the deviation { and 5 vs. time ¢ at some exemplary excitation frequency w = 22 Hz.
Here, we see that a significant improvement of vibration attenuation holds not only for ve-
locities and accelerations, but also for the deviations themselves, which are actually not the
target of the proposed control.
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