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E. Reithmeier, G. Leitmann

ROBUST VIBRATION CONTROL BASED ON
READILY DETERMINED VARIABLES

.. Many dynamical systems such as cars, machine tools, planes or satellites suffer from vibrations caused by uncertain
internal or external excitations. These mostly undesired vibrations affect eitherthe comfort or the reliability of functional
parts. One current approach to attenuate these vibrations is via so called active suspension elements. Mounted at appropri-
ate places inside the systems or with respect to their environment, they are able to interchange or dissipate kinetic and
potential energy in an effective way with moderate control effort. The effectiveness depends greatly on the control scheme
applied to change damping and stiffness characteristics of the suspension elements. The control schemes however need
very often information on the state variablesin the mathematical model. On the other hand,mostly acceleration or speed of
certain parts can be sensed reasonably and obtained with sufficient accuracy.

We propose an affordable control scheme which is solely based on these readily determined variables mentioned above.
In addition, we only use control actions within a discrete set of possible values whichmakes them very easy to compute in
real time. Furthermore, the number of control inputs (actuators ymay be arbitrary, that is, the system may be mismatched.
The scheme is based on Lyapunov stability theory and, provided that the bounds of the uncertainties are also a priori

known, a stable attractor (ball of ultimate boundedness) of the structure can be computed.
The effectiveness and behavior of the control scheme is demonstrated on a simple model of an active car seat suspen-

sion to enhance the driving comfort.

1. Introduction

The class of systems which we shall take into
consideration may be described by a dynamical system
with a finite number of degrees of freedom. The
structure has to contain "active" suspension elements.
We call suspension or coupling elements "active” if
they are adjustable with respect to their stiffness and
damping behavior. Based on that model we assume
that acontrol action is related to a change in these
properties. The mathematical description of these
kinds of structures is assumed to be of the form

X=Ax +B(x) ‘u+e x(0)=x, )

The linear part of the mathematical model of the
structure to be controlled is defined by the constant
and stable matrix 4eIR™", wheren e IN denotes
the state space dimension. The control input matrix
B(x) :=B(x)+B, el BM may contain some
constant part B, e IR ™"
Bi(x) e IR™ which is linear with respect to
x.xelR" represents the n state variables; g IR™
represents the m control variables. Furthermore, we
will assume that only y '=X is detectable via some
appropriate measurement device. The control
variables have to be taken from the set:

Us(p:IR" > IR™ | p(y) eft; minOttjmaf V j=bom} (2)

where p is supposed to be piecewise continuous with
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and some part

respect to the measured and/or observed variable .
Without loss of generality and for the sake of
convenience, we may assume that u,.. =landu_
=+1. The particular choice of a a control action 2, (y)
which either takes the minimum value 4. 0, or the
maximum value %, almost everywhere, is motivated
by the control desfgn presented in Leitmann et al. 1993,
All uncertainties and nonlinearities of the system are
modeled by some appropriate, at least piecewise
differentiable function e(t).

Its time derivative is assumedto be bounded: that is,

le® |<e vV telr, (3)
holds for some properly chosen &€ IR, .
2. Control Design

For the controller design we ask for a feedback
controller #:=p(y) which drives the measuredand/
or observed variable y towards a ball of ultimate
boundedness B_:= {{§ €lR” | ||§“5P}- for some
properly chosen real number p > 0. As a first step

towards this objective the time derivative of equation
(1) leads to

£=Ax+i[B(x)-u]+é
dt (4)

Furthermore, taking

d .
%[B(_x)] ZE[B‘(x) +By] =By X) (5)

~.\Amyﬁ"r-‘;:v'v"$n:-:- S L et




into account - due to the linearity of B, with respect
to x - leads to

$=A¥+B (%) u+B(x) i+é . (6)

And, since the components u; of # take the constant
valuesu, ., Ooru, almost everywhere,that is on
open subsets of IR’ except on measure zero sets of
IR" the time derivative of u = p(y)along any solution
t> y(t) of equation (6) is zero for all p belonging
to u, provided chattering does not occur on the
manifold

-

o ={yeIR" |bi(y) =0 ™
for anyj € {1..., ﬁ}. Hence, we obtain
y=Ay +B(y)-p(y)+e. ®

This result enables us to return to the control
design procedure introduced in Leitmann et
al.(1993). There we ask for a feedback control function

p*e€ u which - for an arbitrary but fixed positive
definite matrix P € IR - minimizes the "Lyapunov
derivative"

L @)=y P[Ay +By(y)p+é]=
=y P[Ay +2].,p;By(y)i; +¢é]
with respect top € U for every (y; t) €IR*xIR,.
Here i denotes the unit vector with i",i=0 fori#j.

In that case, the time derivative of the Lyapunov
function candidate

C)

oy = %y(r)" Py(t) (10)

will be as small as possible for any:
(i) response ¢ y(t) ,
(ii) admissible uncertainty ¢ ,
(iii) and time ¢,

and for all admissible choices of control p(¥(t)).
Equation (9) can be written as

L (p (y)).-=a(y)+ﬁlp,-(y)b,-(y)a-o(y.r) (11)
Y J=

with

1
a’y) :=-5yTQy where O :=-(PA+A' P)

bj(y) - "PB(y)i; where 111 .= Sjk (12)

and

oy1) =y Pet) (13)

Then, using the normalized control space u, we obtain

Robust viration goatral Based on raadily defermined variables
oo [P B(p)>0
Py ‘{+1, if b(y)<0

The performance of the controller may be en-
hanced additionally if we choose P appropriately. The

(14)

“smaller the Lyapunov derivative, the stronger the

«tendency to the origins of £ y(t) . Our objec-
tive in that case would be to strive for a highly nega-
tive value a(y) in equation (11). That, on the other
hand, can be done by choosing a suitable positive defi-
nite Q and solving the algebraic Lyapunov equation

Q=-(PA+ATP) (15)

for P. Since A is assumed to be stable, the matrix P is
positive definite.

3. Stability

Using the control scheme developed in chapter 2
it is possible to determine a sufficient condition
between parameters of the system and control design
parameters for ultimate boundedness with respect to
some ball @, of any response /> y(t) . In order to
analyze this situation we employ, for any given
positive definite matrix P € IR the controller p*(y)
(cf. equation (13)) in its corresponding Lyapunov
derivative!. This leads to

L @*@)=3y QI PB(3) () + Y P
1 . .
=-5yTQV +y" PB((y)( Tjap(y)1,) +y" Pé
= LyT oy - sple o0l yT Pe L (16)

Since y” Qy is a positive definite quadratic form, it
is bounded by the minimum and maximum eigenvalue

A (@and ) (Q)of Q That is,
b @ @S - A (D -
- £l l-1Pl el

or, neglecting the second term, employing inequality
(3) and using the maximum eigenvalue &, (P) of P

(17)

1 T
L @*@)S 5 Ml O +e- A P . (18)
Thus, we obtain

\ Amax( P)
L (p*(y)<0V =2 g IR
@*(y) “y“>r /qm:'n( Q)

The radius p of the ball of ultimate boundedness
B, : ={felR nl | of" <p} is therefore determined by

p=r ’ﬂmax(f’)
Aol P)

(19)

(20)
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Any response ¢ > y(t} which enters B, say at ¢
= t*, remains in @ for all £ >¢* It should be noted

that B, with radius given in (20), is the ball of

ultimate boundedness for control actions #=0v,
since the terms Z?Z]Tb i .V)tl were neglected in (18).
These terms reduce the right hand size of (18), except
aty where the b, () = 0 for all j. In other words, the
control acts to reduce the radius of B, as well as the
rate of convergence.

It should be noted that the control scheme (14)
pertains to the open regions separated by switching
manifolds™ (7). For y(¢) on a switching manifold T,
the terms dependent on du/dt, which is unbounded
there, lead to Dirac delta changes in g and Vin the ideal
model under discussion. In practice, in a neighborhood
of a switching point, rapid changes in g and V occur
due to control with "high" gain over a "short” time
interval. 1 In the stability analysis, we assumed that the
rapid changes experienced by Lyapunov function
V(y(t)) at a switch point of the control are sufficiently
small, or even benign, so that they can be ignored, This
seems to be borne out by the simulation results, but
needs closer examination in general. We intend to
investigate this phenomenon as well as that of possible
chattering, in subsequent research.

4. Example: Active Suspension of a Car Seat

Fig 1 shows a simplifed model of an actively
suspended seat in a car. : _

The car model consists of a mass M. Vertical
vibrations caused by a rough street may be partially
attenuated by shock absorbers (stiffness &, and
damping c,). Nontheless, the driver may still be
subjected to undesirable vibrations.

coelerometer (= ¥ )

Driver + Seat

Active Scat Suapénsiou

Accelerometer (= E) )

Car

Shock Absorber

Figure 1: Model of an actively mounted seat
inside a car

These vibrations, again, can be reduced by
appropriately mounted car seat suspension elements.
The elastic mounts are considered to be active
with  stiffness ky(u) =c, +B, - u and damping ¢ (u)
=0, +P, - u. u is the normalized and constrained
control variable. That is, stiffness as well as damping
can be varied only by changing the scalar variable u.
The vertical displacement £(¢) is considered to be
unknown but possibly with a known bound. We
assume that accelerations £ and 7jare measured. The
velocities £ and 7} are either also measured, or at
least estimated from their measured time derivatives.
That leds to the following matrices for the model
according to equation (1):

0 0 1 0
0 0 0 1
A= _(ﬁ_t“_k) 73 _[waej o
' M M M M 21)
_% % % _%
m m m M
and
B(x):=B;x+B,, 22)
where
0 0 o 0 0 ]
0 0 0 © 0
=} _ Ik _@‘_ ufa Ec_ , B = _ﬁk“gs
"M M OM M| M ,
B B B B B9 (23)
m m m | T

The state vector is given by x :=( g,q,é',f])f . The
ground excitation leads to

0
y: o=\ k ’
eft): = ﬁ.(g(:));;—;—-é(t) (24)

Simulations for x and y are based on the original
state equation (1) with control (14) which dependens
on y:=x ,namely ‘

x=Ax+B(x)p'(y)+e(t) . (25)

11t is possible to deal with uncertain state measurements in the manner diseussed in Reithmeier et al. (2000), here setting p,(y)
=0 in an appropriate neighborhood of II, for any §Of1,..,n}. In Reithmeier et al. {2000) a so-called fuzzy controller is used making
the controller a continuous function of y, thereby also precluding chattering. However, here this can not be done in view of the

diserete valuedness of admissible control.
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Figure 2: Mean values !Ej and |§| vs.
excitation frequency @

" The simulation results (cf.Figures 2 and 3) are
based on the parameters

g =9.81[m/s?] gravitational constant

m . =1500 [kg] mass of the car
. m, =100 [kg] mass of the seat + driver
R k, =10° [N/m] shock absorber stiffness
- ¢, =5-10*[Ns/m] shock absorber damping
o, =108 [N/m] (26)
B, =5-10[N/m]
o, = 60 [Ns/m}
B. =30 [Ns/m]

&,and Jjare chosen in such a way that shock ab-
sorber elements are relaxed for (§~¢)=5, and the ac-
tive seat suspension elements are relaxed for (77—-£)=8,.
That leads to

§.o=4

s 27
and

5 ﬁ(m+M)-q

A k R

3-755

8

Fobust vigration contral based on readfly determined varizhies
The ground excitation is taken to be harmonic, that is

S(t):=¢ sin(w:t)

with amplitude ¢ :=0.03{m] and a variable ex-
citation frequency 10[Hz]< & < 40[Hz]. In order to
measure the effect of the employed controller, we in-
tegrate the system between time'to =0{s]and ¢, ~ 10
{s].-After a settling time £, = 5 [s] for the homogene-

ous parts of the state variables to be practically
damped out, we compute the mean value

M 1 27 02
il - \/—_":2_:1 J“l i) a

for the variables x, of x as functions of the excitation
frequency @. Without loss of generality, the numeri-
cal integration of (25) was started, with the initial
condition x(0) = 0. The values of #(t) may be directly
obtained from (25). Figure 2 shows the results for the
variables x, = & and %, = £, and Figure 3 for the vari-
ables x, = 1] and x,= 7. Similar improvements in the
stability behavior of the accelerations & and 77 take
place. Interestingly, even though the control p’(y)
was designed to improve the stability behavior of y(2),

(29)
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Figure 3: Mean values | and |} vs. excitation
frequencyw
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we see that the behavior of x(¢) is greatly improved
as well; this is particularly so for the seat coordinates.

Although there is a slight deterioration of & and & and
between @ =25 [Hz] and =33 [Hz] of  and &, the
significant improvement of ) and 77 prevails.
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HACTHBIX AMLL

Tel.: (095) 9241 2440

Yeaxkaemble umtareAm!

PeAQiLMST MEXAYHAPOAHOTO XYPHOAC
“ITPOBAEMBI MALLUMHOCTPOEHNS 11 ABTOMATU3ALNIN"
(ENGINEERING AND AUTOMATION PROBLEMS)
BLIPCOKAET FAYSOKYIO BAArOACPHOCTE OPIaHN3ALWAM, COTOYAHUHCIOWWM C XXYPHOAOM
1 OKA3LIBAIOWLIMM eMy GUHAHCOBYIO MNOAASDNKKY.

NCXOAS N3 CAOXUBLLONCS 2KOHOMUYSCKON CUTYOLMUK, PEACKLINS BbIHYXKASHA
OTAQEATE NPUOPUTET NYSAVMKALMSIM GBTOPOB OPFaHU3ALINIA, KOTOPHIE NPK BoIMOAHEHW
TPeBOBAHMI PEACKUMU XYPHAAQ CMOryT oGecneduTs OUHAHCHMPOBGHNE
PeAQKUMOHHO-M3AATEABCKMX PABOT NO WX NOAFOTOBKE K BbIMYCKY B CBET,

B CBSI3M C BTVM, MPUHOCKM CBOW U3BUHEHUSI GBTOPCM 30 BOSMOXHYIO 3AASDIKKY C
nyGAmmu.iaeﬁa MATEPUOACE HE 06ECTIeUSHHBIX GUHAHCOBOM MOAASD KON,

PeaakLus RypHaAQa “IPOBAEMbI MALIMHOCTPOEHUSA U ABTOMATU3ALNN"
APUFAQLLICET K COTRYAHUYECTBY 3AMHTEDECOBAHHLIG OPraHM3aLMMU 1 PUPMBL, O TAKKS

Fax: (095) 928 6039
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