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Abstract -

Optical measured data Sets contain a number of “bag values”. Many filters and attached processing
steps, needed a complete grid of data points.

Therefore traditional reconstruction techniques often use simple polynomial or spline interpolation
respectively approximation algorithms. This tauses problems fike overshooting and a strong
dependence from the neighbour given data points. These neighbour data points are often affected by
artifacts because of optical measurements. This result in an unfa vourable surface reconstruction.

The goal is to minimise the effects caused by artifacts and to get reconstruction results, which
correspond better with original surfaces.

Key words: bad value, surface reconstruction, confocal microscope, white light
interferometer

1 introduction

measurement systems doesn’t attached them with a metrology value. Beside this “bad
values” a couple of additional effects appear in measurement results. Confocal microscopes

This overshooting is also called ~bat-wings*

Many traditional reconstruction methods use simple polynomial or spline interpolation. These
techniques are strongly depending from the neighbouring given data points. Unfortunately
the neighbouring given data points are often “bat-wings” and the reconstruction techniques
shouldn’t be affected by optical artifacts.

Using weights for every single given data point could minimise influences of optical artifacts.
Weights shall be generated not only from topography data but also from furthermore
measurement information like image stacks by confocal microscopes and & priori knowledge.
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2 Algorithmic

Many interpolation methods need a equidistant grid like most of the FFT-methods. The CCD-
Chip or CMOS-Chip in the optical measurement Systems provides equidistant grids. These
grids normally have holes in various sizes because of the “bad values”. So a method is
needed which could uses irregularly spaced data points.

2.1 Shepard Interpolation

Shepard [1] introduced a method for irregularly spaced data points (see also [2-7]). Eq. 1
shows the Shepard interpolation for a whole surface, with a weight function w, forall N

nodes (xl,., yj) and a corresponding function f; respectively given data points (excluding the

“bad values”):
N
P )= w(x9)f, . (1)
j=l
The normal weight function for a single supporting point (x}.,_vj) is given as:
r(x,y)
W, (x,y)= —Vi—— . 2

Z r(x,y)

i=]

The distant function r, (x, y) is defined as:

) b

ri(x,y)= Jr(x,y)=

(\/(’r”"—f,)z +(y“)v’,): )" AR

In this case x4 is a smoothing factor and should be in the range of (< 4 <. The best
results are normally at 4 =2 . Besides this there are a couple of more definitions for distant

weight functions (for example in [8]).
The improvement is to create new weights which use & priori knowledge about the given data

points. Using a general weight function g(x,,y,) modifies the Shepard’s interpolation

I

2 0 forall (x,y)
|

forall (x,y) = (x;, y,) (3)

1
|= 0 forall (x, V=(x,y, ),k # J

equation to the following:

2506y g(x,y)) f,
(x, y) =L (4)
2n(xy) 8(x, )

=l

Using Information from the whole measurement data set could lead to an individual “mutual
trust map” for every single measurement. The “mutual trust map” should only based on the
measurement data set, preliminary ideas of the measurement processes and & priori
knowledge of the surface.

In the following subsection different weight functions are discussed.

2.1.1 Weights derived by a moving average/median

“Bat-wings” is a common phenomenon, it's a good choice to use a weight which minimise it's
influence on reconstruction results. One characteristic of “bat-wings” are that their values
normally are not similar to the local average of the surrounding surface. To achieve this, a
square shape is moving about the surfaces and every value of the given data point inside
this shape, is taken to build their mean or to find their median. M is the number of given
data points inside a Square shape (see also figure 1). Building the square of the residual
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. given data points inside the square

@ given data points outside the square

bad values inside the square

bad values outside the square

square

Fig. 1: bad values ang given data points distribution in-, and outside of the square
of interest (here M=24 )

For better results M should greater than 5. Over this the edge length of the size of the
Square should be at least 7x7 pixel or higher.
2.1.2 Weights derived by the gradient of the surface

An additional way to detect “bat-wings” is, to take gradients of given data points as decision
Criterions:

g(x/9_\'j) =

2.1.3 Weights derived from intensities

Many optical measurement systems provide not only metrology data but also data about
intensity during the measurement. The intensity normally various within different surface
areas, this depends on different material properties, current surface slopes and steep edges.
In general because of the better signal-to-noise-ratio at high level intensities these values are
more secure.

Using the maximum intensity /__ leads direct to the Intensity weights:

§(x;y ) =1 (x;,v,) (8)

327



— . e

value z. These intensity figures coylg also be ysed to calculate the reliability of the
measurement resyjts. Ideal intensity figures are normally symmetric. Non optima] Measuring
conditions appear as unsymmetricg| éntensity figures, which can be Characterizeq using the
Skewness known as the 3ra Moment.

For better results the intensity figure 1(z2) is limited by 2 threshold Operator. The

corresponding height valyes are z, and Z, with % <2z,.The intensity density underlying is:

r& 4 sz<y,

h ()=} [1(2) ¢z | (9)
( “' 0 otherwise

with mean

;=j.z h(z) dz (10)

and variance
5= h a o)

The skewness of the intensity figure is defined as:

I %, —\3
S, :Tf(g‘r) h(2)dz (12)
o :
which results in the foilowing weight:
I

(«‘»’;»,V):\ (13)
5 1+!Sj./
3 Exampie

The foHowing €xample shows the influence of the mean weight on the Shepard interpolation,
Figure 2 shows an Asj Surface with g couple of particles. The figure is grey coded lower
values are darker, “bag values” appear as holes. Near to “bag values” are g lot of “pat-
wings”.

This data set is reconstructed with the normal Shepard INterpolation (Eq.1-3) figure 3. Clearly
to see is that the normay Shepard interpolation depends strongly on the “bat—wings”. To

Figure 5 shows the result of the Shepard interpolation with the mean weights. The influence
of the overshooting is strongly reduced. The reduction js near the “bat-wings” larger than
farer away. To Compare both methods figure 6 Shows the difference between the “‘normay”

and the modifieq Shepard interpolation”. Using the other weights the behavioyr IS quite
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Fig. 6: Difference between normal Shepard interpolation & Shepard interpolation

with mean weights

4. Conclusion

The foregoing weights for the Shepard interpolation enables us to improve reconstruction
results for optical measurement systems. The weights are especially designed to react on
some of the common problems like “pat-wings” in optical measured data sets. Over this it's
also possible to use this weights as an indicator for ‘bat-wings” and other optical artifacts.
Using these weights as an indicator, these values could be exclude from given data points.
That makes these points to second order “bad values”, which also could be reconstructed by
the introduced way.

Besides the standard usage of Shepard interpolation and the new introduced weights it is
also possible to combine different weights for even more improved reconstruction results. If
the surfaces properties are well known, special designed weights could be used, which
compare the measured surface data with the €xpected results.
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