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1 Introduction

The main objective discussed in [5] is the suppression of undesired noise or vibrations
in dynamical systems which are modelled by an o.d.e. of the form

= Ax + B(x)u+e(x,t) with x(0) =x € R". (1)

The variable x € IR” describes the state of the system. 4 € IR™ is assumed to be a
constant and stable system matrix. # € IR” with ux € [—-1,+1] fork = 1,...,mis the
constrained control input. The input matrix B € C°{IR*,IR"] may be state-depend-
ent. The Caratheodory function e : IR" x IR — IR" models time-dependence, addi-
tional nonlinearities, and unknown disturbances. However, it is assumed to be
uniformly bounded; that is, ||e(x, £)|| < 7 for all (x,#) € IR” x IR, where the constant
n € (0,00) may be unknown.

In [5, 6] the authors showed that the control design method based on Lyapunov
stability theory leads to a unique control function

e = pi(x) = —sgnlbe(x)], ke {l,...,m} 2)

that minimizes the time derivative F(x(f)) of any given Lyapunov function candidate
V € C!{R",1R] along any trajectory ¢+ x{¢) which satisfies equation (1) with control
(2). The indicator function by in that case is given by

bi(x) = zn:[%g (x) ~Bjk(x)] where By (x) := efB(x)Ek. (3)

(el-Tej = 5;']', éITéj = (S,j, e, cR" ¢ € ]Rm)

As shown in [6], the commonly used Lyapunov function candidate V(x)=x"Px
with P € IR™" and P > 0 is actually a Lyapunov function if we determine P via the
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algebraic Lyapunov equation P4 + ATP = —Q where @ € IR™ is any given positive
definite matrix. In that case, the radius p of the ball of ultimate boundedness is given
by

/\max (P ) >\max (P )

—2.n. . ,
F g )‘min ( Q) )\min ( Q)
Amax(P) and Ay (P) denote the maximum and minimum eigenvalues of P > 0. The

same holds for @ > 0. At this point it should be noted that minimization of the
Lyapunov derivative

(4)

L plt) = x"P(Ax + Bu + e(x, 1)] (5)

has also a geometric interpretation in IR”: Since P > 0 there is an invertible T € IR™"
such that P = TTT or, along a trajectory of (1),

L] =xTT Tk
- (" 51, |1 - 73] ©)
:yTj” [y = Tx]

Thus, the proposed control (2) minimizes the inner product between y(¢) and y(¢); in
other words, y(¢) points as closely as possible towards the origin. Of course, this
tendency and hence the system performance depends on the choice of T or P, re-
spectively. In Section 3, in order to illustrate further the “optimality” of the pro-
posed control (2), we employ a T such that

TAT ' =Q, (7)

where the real matrix Q is defined by

_ 6w -
( [#95] —(5] ) 0
: 0
”—6’% Wh,
Q.= 0 ( W, 5}%) (8)
—p 0
0 .
L 0 —Hn, |
and
o My_j = —b + iwy and Ay = —6; — iwy are the complex eigenvalues of A

® y,..., M are the real eigenvalues of A.
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Furthermore, because of
—Q=PA+A"P
=T"TA+ A"T'T
= TT(TAT )T+ TP (10) AT T
= 17QT + 17(TAT )T, (Q=T4AT™")
=17 (Q+QNT ®)
= —T7AT, (A:=—-(Q+Q"))

- (vary (van)
— —_R'R, (R - \/ZT)
N |
Q=R'R .(10)

- respectively, this T defines a Lyapunov ﬁinction,'and (cf. [6]) the radius p of the ball
of ultimate boundedness is given by

7 A (TTT)

— 11
P e\ X I°T) (1

with '
Omax == MaX{01,.. ., 0y i1y s Hn, } (12)

2 Lyapunov Approach as Limit Case of a Linear Constrained Control

The objective of this section is to show that for B(x) = B = const. the controller
design discussed in Section 1 and in [5, 6] is a limit case of pole placement within the
set of all admissible linear constrained feedback controllers. The attribute admissible
denotes the restriction of # to the set of constrained linear controllers

Uy = {u € COR", R™} | ux(x) = —sat(¢{Kx); Ke R™; ke{l,...,m}} (13)
with
+1if flx) < —1
sat(f(x)) :=="¢ flx) if -1 <flx)<1; feC'R"IR] (14)
—1 ifflx)>1




12 EDUARD REITEMEIER and GEORGE LEITMANN

Of course, the controller p(x) described in Section 1 does not belong to I4,. However,
there exists a continuous parameter deformation

- s
Pk(x: ) : ]Osi[ — U,

‘o~ — sat[tan(a)é] B' Px] (15)
(k € {1,...,m}) such that
Pr(x) = al_i’x?/zﬁk(x, o) (16)

Suppose that a solution ¢ — x(¢) of (1) with u = Pr(x, ) is such that there is an
interval [f1, t;] during which not all components of # are saturated. Let

u= [::;;:l, B= [BI, BH] = Bu = Bm; + Bruy (17)

where #; denotes the unsaturated part of u. Then the systems behavior on [t1, 2] 1s
governed by

x = Ax + Bju; + Bruy + e(x, t)

T (18)
= (A4 - tan(«)B;B; P)x + Bpuy + e(x, t)

That is, as in the Lyapunov approach of [5, 6], the controller design does not take
care of the uncertain excitation e, but rather improves the behavior of the nominal
system and hence its behavior in the presence of disturbances.

With respect to (17), any arbitrary but fixed « € ]0,%[ determines a pole dis-
tribution of the nominal system. These poles are the eigenvalues of

A(a) := A — tan(c)B;BIP. (19)

In order to investigate the damping behavior of the controlled nominal system, we
will take a look at one of the invariants of A which gives information about the real
parts of the eigenvalues: )

A(c) = tr(4 — tan(a)BBI P)
= tr(A) — tan(a)te(BBY T7 T)
= tr(4) — tan(e)tr(TBBIF TT) (20)

= ——HZC26A, — :Vr:,uk — tan{a) ioﬁ
k=1 k=1 k=1
where

o2 := el TBBI T7e]. (21)
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That is, if o — § then
1) p(x,a) = p(x)

2) ZRe{,\k(A — tan(c)B/BIP)} — —co (22)

In other words, the proposed Lyapunov approach leads to the strongest possible
damping “on the average”.

3 Test Example and Numerical Results

To illustrate the result in Section 2, we will employ a test example already used in [6],
given by the system matrix 4

0 0 1 0
0 0 0 1
d=|_Llk+k] 2 -tleta 2 (23)
L} ) 23 _a
mz "y ma "z
with
m; = 1[kg|, k; = 1000]N/m], ¢; = 1[Ns/m], (24)
and control input matrix B and excitation e given by
0 | 0
B= g , e(x,t)= _O_F_ (25)
m
with
o F() = Fsin(v - 1),
e F=5[N], ve& [10[1/s],80[1/s]..
The feedback control employed is
Pr(x, @) = —tpmy - satftan(a)xTPBg), ke {l,...,4}. (26)

with
®  Upyae = 2.5[N/m].
That is, we consider a fairly simple example which, however, accounts for

o mismatched uncertainty,
e constrained excitation,
¢ and constrained control.
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Figure 3 a — (A, A2).

Figs. 1 and 2 show the amplitudes of state variables x; and x; versus the excitation
frequency v for different values of «. o = 0 is equivalent to no control applied and
a = x/2 indicates the proposed Lyapunov approach. For a — 7/2 the figures also
show that vibration attenuation improves significantly.

Fig. 3 shows the eigenvalues of A(a). As o tends to m/2 all real parts of the
eigenvalues move towards more negative values. Re{);} has a strong tendency to-
wards —oo, while Re{)\;} seems to move to a value less than infinity. However, on
the average, the tendency towards —oo appears to hold.
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