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Abstract. This paper presents a brief overview about gaussian regression filters to extract sur-
face roughness. The mathematical background in the spatial as well as in the frequency domain
is discussed. It is shown that gaussian regression filters work without any running in and run-
ning out sections and can approximate form up to pth degree. In the industrial world it is well 
known that linear filters are non robust, which means that any protruding peak or valley (also 
called “outlier”) leads to a distorted roughness topography and effects the calculation of sur-
face parameters directly. In particular plateau like surfaces are good candidates for such critical
datasets. In the paper it is shown that such a distortion can be avoided by choosing an appro-
priate  - function. This proceeding leads to the so called robust gaussian regression filter with
all the advanced properties of the linear one.

1. Introduction
The gaussian filter according to ISO 11562 [1] is a worldwide used filter to separate roughness from
longer waved components like form, form deviation and waviness in a measured profile. In many
cases the gaussian filter works satisfactorily. However, looking at modern manufacturing processes,
there is a lack of robustness when filtering profiles with function relevant structure elements (for ex-
ample laser holes or hard particles in metal matrix composites). In other cases the running in and run-
ning out sections of the standardised filter process shorten the filter mean line in a not acceptable
manner. Also form filtering can be a critical application for the standardised gaussian filter. For this 
reason new filter methods were developed in recent years. In germany two of these filter methods be-
came very popular, namely the spline filter proposed by Krystek [2] and the gaussian regression filter
proposed by Bodschwinna and (last but not least) the author himself [3]. Both filters became integral
parts of the ISO 16610 series. Since only german references are available up to now this paper gives a
brief overview about the gaussian regression filter technique. 

2. A brief overview about gaussian regression filters

2.1. The filter equation and its spatial properties.
The gaussian regression filter technique is based on the following modified Savitzky Golay filter [4]
of pth degree: 

k

T
k k k Minz X s    (1) 

with the matrix 
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and the parameters (an element of a vector or matrix is indicated by an index and written in italic
font)

n =  number of profile data values, p = degree of the approximation polynomial,
k,l = 0,1,…,n-1, j = 0,1,...,p,

ql,k = x (l-k) with x the sampling interval, en = [1,0,…,0]T vector of dimension n  1,
r,k = rth derivative at the position k, = smoothing value of the profile filter, 

z, w = vector of dimension n  1 of the profile data values respectively the filter mean line. 

As a necessary constraint, the first derivative of the minimisation problem in (1) must be zero at the 
minimum. We yield (the operator diag(x) forms a diagonal matrix of vector x):

T
k k k kX S z X 0  with :

x
x

x
 and  (3) : diagkS ks

Unfortunately, the unknown parameters k cannot be calculated directly because equation (3) is
nonlinear. To overcome this problem, we choose newtons method, respectively we linearise equation 
(3). This leads to an iterative procedure for the unknown parameters k :

1diagT m T m m
k k k k k k k k k k kX S z X X z X S X 0m  (4) 

where m is the iteration step. Taken into account that the derivative  in equation (4) can be
nearly expressed as (z-Xk k

m)  diag(z-Xk k
m)-1 (z-Xk k

m) : (z-Xk k
m), we get a weighted least

square result from (4): 
1

1 diag diagm T m T m
k k k k k k k k k kX z X S X X z X S z  (5) 

Equation (5) is the exact solution for the mean line w and the profile derivatives r,k of the gaussian
regression filter. However, the approximation diag( (z-Xk k

m)) Sk  diag( (z-wm)) Sk  simplifies the 
given formula drastically and leads to an iterative approach for the gaussian regression filter: 

1
1

1 diag diagm T T m T m
k p k k k k kw e X z w S X X z w S z  (6) 

In matrix notation with m of dimension n n  we get wm+1 = m z. Each column of the matrix m

corresponds to a space variant weighting function at position k.
The filter equation is defined over the range k = 0,…,n-1 and has therefore no running in and run-

ning out sections. Moreover the filter has a vanishing moment up to pth degree. To show this property,
we locally expand an arbitrary profile in its Taylor series z = Xk k. Inserting the profile z in equation
(6) gives the equality wk

m+1 = wk.

2.2. The linear case
In order to derive the linear gaussian regression filter, we have to set (x) x2 respectively (x)  2x.
This leads to (z-wm) = 2 and the solution for the linear case: 

11
1

m T T T
k p k k k k kw e X S X X S z   (7) 

which doesn’t depend on the mean line wm and is therefore resolvable in one step. Due to linear op-
eration, we are able to define a transmission characteristic S( ) for a sinusoidal profile of arbitrary
wavelength , as shown below (2.2.2 and 2.2.3).
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2.2.1. Choosing the smoothing parameter  In roughness measurement technique, the filter is charac-
terised by its cutoff wavelength c (nesting index). That means, the amplitude of a sinusoidal profile 
with a wavelength c is damped to 50%. To calculate the cutoff wavelength for the linear gaussian 
regression filter we take a complex exponential function exp(-i k x c-1) as the profile z with an
infinit number n of data values and a sampling interval x which tends to zero. This simplifies the 
numerical evaluation because any sum can be now approximated by an integral. 

2.2.2. The gaussian regression filter of 0th and 1st degree. Once the complete gaussian weighting func-
tion lies within the profile, the filter of 0th degree and the filter of 1st degree are nearly identical and 
corresponds to the discrete version of the profile filter according to ISO 11562. However, the advan-
tage of the regression filter technique over the standardised filter is the fact that no running in and run-
ning out sections shorten the filter mean line. Following the definition given in chapter 2.2.1 the
transmission characteristic for the 0th and 1st degree filter can be written as: 

2

2
expS  with 

2

2

1

ln 2c
(8)

For roughness surface measurement purpose it is recommended to use the 1st degree filter. The rea-
son is simple: calculating the mean line of a sloped profile z  [qk

0 qk
1] k we get wk wk

||sk||
-1 sk

T qk
1

1,k as the response of the 0th degree filter and wk wk as the response of the 1st degree fil-
ter. At the marginal area of the profile the term ||sk||

-1 sk
T qk

1
1,k of the 0th degree filter is  0 and the 

mean line doesn’t follow the slope anymore. The 1st degree filter is the better choice ! 

2.2.3. The gaussian regression filter of 2nd degree. The gaussian regression filter of 2nd degree is suit-
able for both roughness and form filter applications where it is required to approximate curvatures as 
well. The transmission characteristic is 

2 2

2 2
1 expS  with 

12

2

1
1 W 1,

2 ec
(9)

and W(k, x) as the “Lambert W” function [5]. The asymptotic weighting function is: 

2
, ,

3
exp

2l k l k l k
2
,s q q q . (10)

The weighting function and transmission characteristic is shown in figure 1 (in comparison, ISO 
11562 in light grey).

1,0

0,6

0,8

0,5
0,4

0,2

0,0
-2

10
-1

10
0

10
1

10
2

10-1 1

1

0 1c� ���

�
�

S
�

�
1� �c

(a) (b)

l,kq�

� �s c��l,kq�

Figure 1. The weighting function (a) and the transmission characteristic (b) of the 2nd degree 
filter. In light grey ISO 11562.

2.3. The robust case 
Typically a linear filter is sensitive against outliers or structure elements like deep pores. For example
the grooves of a honed surface will influence the mean line drastically and therefore the roughness
profile and its parameters as well. To make the regression filter robust we have to choose an appropri-
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ate (x) - respectively (x) - function. In case of the robust gaussian regression filter we take Tukey’s
biweight function [6] with the definition:

22

1
x

x x
c

 for x c  and 0x  otherwise. (11)

Other functions are defined by Andrews, Huber and Hampel [6]. The constant c is a normalisation
factor which ensures the scale independency of the regression filter. Having in mind a least square es-
timator ( (x) x2) can be seen as the maximum likelihood solution for a gaussian distributed rough-
ness profile superimposed with a long waved component, we define the constant c as three times the 
standard deviation of the underlying roughness. Than we get (x) x for x<< c. The standard devia-
tion itself can be estimated using the median absolute deviation which is also known as MAD [6]. For 
a gaussian distributed roughness profile z-w with standard deviation  we yield

1

1

MAD
2

MAD

1 1
exp 0,5 1,4826 MAD

22
z dz . (12)

In case of robust filtering an iterative approach defined in equation (6) is required. For each step we 
must calculate a constant cm = 4,4478 MAD, respectively cm = 4,4478 median(|z-w|). The iteration is 
repeated until the relative change |cm+1 –cm| < cm  is smaller than the given The initial estimate for
the mean line w0 is the least square approach: (x) = constant.

2.3.1. Choosing the smoothing parameter The robust filter is nonlinear and it makes no sense to
determine a transmission characteristic for sinusoidal profiles with arbitrary wavelength. In the robust 
case we propose to use a feature oriented choice of the cutoff wavelength c (also known as functional
filtering). As a guideline, very good results are obtained when the cutoff wavelength is about three 
times the feature width being in the profile data set. For example figure 2 shows a profile of an EBT 
(electrical beam textured) surface with a scratch of 0,8mm width. The cutoff c equals 2,5mm for both
the standardised gaussian filter according to ISO 11562 with running in and running out sections and 
the robust gaussian regression filter of 2nd degree.
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Figure 2. Filtering an EBT profile with the robust gaussian regression filter of 2nd degree and the
standardised filter according to ISO 11562. The cutoff wavelength equals c = 2,5mm.
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