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ABSTRACT

In many application areas such as object reconstruction or quality assurance, it is required to completely or partly
measure the shape of an object or at least the cross section of the required object region. For complex geometries,
therefore, multiple views are needed to bypass undercuts respectively occlusions. Hence, a multi-sensor measuring
system for complex geometries has to consist of multiple light-stripe sensors that are surrounding the measuring
object in order to complete the measurements in a prescribed time. The number of sensors depends on the
object geometry and dimensions. In order to create a uniform 3D data set from the data of individual sensors,
a registration of each individual data set into a common global coordinate system has to be performed. State-
of-the-art registration methods for light-stripe sensors use only data from object intersection with the respective
laser plane of each sensor. At the same time the assumption is met that all laser planes are coplanar and that there
are corresponding points in two data sets. However, this assumption does not represent the real case, because it
is nearly impossible to align multiple laser planes in the same plane. For this reason, sensor misalignments are
neglected by this assumption. In this work a new registration method for light-stripe sensors is presented that
considers sensor misalignments as well as intended sensor displacements and tiltings. The developed method
combines 3D pose estimation and triangulated data to properly register the real sensor pose in 3D space.
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1. INTRODUCTION

Reflective optical 3D metrology is used in many areas, such as reverse engineering, object reconstruction, and
quality assurance. Due to its non-contact measuring principle, it is suitable for non-destructive measurements on
sensitive objects. Reflective optical measuring methods use light which is reflected by the measuring object. The
reflected light is then captured by optics and focused on an imaging sensor. Furthermore, the detected light from
the imaging sensor is used to determine the 3D coordinates of the object. Reflective optical methods are divided
into two groups, using passive or active light. Passive light methods find application for instance in passive stereo
vision systems (passive triangulation with two camera units), where light from the environment is used, emitted
from the sun or lamps. Passive stereo triangulation requires objects with strong features to detect corresponding
points in the images of both sensors. Active light methods are used in interferometry, active triangulation or
time delay techniques (time of flight cameras). Active methods use projector units to illuminate the object.
Following, only the structured light that is reflected by the object is then used for 3D object reconstruction.
For measurements on complex geometries, like highly curved objects or objects with undercuts or occlusions,
multiple views from different locations are needed to completely capture their geometry. There are two approaches
to deal with undercuts and occlusions on complex geometries: firstly, usage of one sensor and realigning either
the sensor or the measuring object and secondly, usage of multiple (at least two) sensors, that are surrounding the
measuring object. The first approach goes along with time expenses due to the need of realignment. Furthermore
not all objects to be measured can be realigned easily or at all. The second approach, to create a multi-sensor,
is a less time-consuming solution. In both cases a registration has to be performed in order to transform the
measuring data from all views or sensors into a common global coordinate system.
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The problem of correct registration is getting more and more difficult with increasing measuring range. Especially
for light-stripe sensors, where in the state-of-the-art registration methods all involved laser planes are assumed
to be coplanar. Thus, on wide distances even small sensor misalignments can result in big deviations after
registration in the global coordinate system. Additionally, sensor noise and limited resolution have a bigger
impact on large measuring ranges. State-of-the-art registration methods for laser-stripe sensors use only the
triangulated range data of the sensors and neglect any sensor misalignments. The deviations resulting from
sensor misalignments are also neglected because the registration is applied either on small measuring ranges or
the required tolerances are correspondingly large.
In this paper, a new registration method for light-stripe sensors is developed in order to improve the accuracy of
the overall model in the global coordinate system. The proposed method is based on 3D pose estimation, using a
Perspective-n-Points (PnP) algorithm, and triangulated data of a reference object. As a reference object a simple
2D checkerboard pattern is used. First, an estimation of the 2D checkerboard is performed which is initially faulty
due to estimation accuracy.1,2 Afterwards, laser projections on the 2D checkerboard in the same pose are also
estimated in 3D space. Here triangulation of these projections is regarded as the ground truth, which is further
used to compute the proper pose of the 2D checkerboard with a rigid body transformation. Extrinsic parameters
of the proper pose are finally used for the registration. The developed method allows for the correct determination
of sensor misalignments as well as of intended sensor displacements and tiltings. For this reason, the proposed
method can especially be applied in dimensional measurements like in object reconstruction, where there is no
need for perfect cross sections, because of polygonizing the measured data points to a mesh. Considering sensor
displacements in the registration, an accurate and time-consuming adjustment of the sensors becomes incidental.
The results of the developed registration method are shown on a measuring object and compared with results
from the Trimmed ICP (TrICP) algorithm,3 a state-of-the-art registration method.

2. STATE-OF-THE-ART REGISTRATION METHODS

In this section different state-of-the-art registration methods for multiple optical 3D sensors are presented with
regard to the light-stripe sensors.
In Stoecher et al.4 a calibration method for a multi-sensor consisting of at least two cameras and a laser plane
is presented. The laser plane is spanned by at least one laser projector unit. If more than one projector unit is
used, the planes are aligned and assumed to be coplanar. Depending on the constellation of the multi-sensor,
it is a multi-view laser stripe sensor or a multi-sensor with multiple laser-stripe sensors. For calibration, which
includes the registration of all cameras respectively light-stripe sensors, only the sensor range data of a wire-frame
reference object is used which has to be precisely moved by a translation stage. At least five significant points
are needed which are computed through intersection of three planes fitted in the range data. As a reference
object a self-made wire-frame model of a cube is used, consisting of standard aluminium profiles. Attention has
to be paid to the alignment of the reference object to avoid occlusions for other cameras.
In Schoch et al.5 the registration of multiple laser-stripe sensors in a radial arrangement is tested in a simulation
environment. The condition for this method is also that all laser planes have to be in the same plane. For
registration, a special reference object has to be measured with each sensor. The reference object is composed of
a circular plate which is divided into four equal sectors with unique boundaries. The unique sector boundaries
consist of cylinders, placed in defined distances, and cuboids with different edge lengths between them. The
dimensions of the cylinders and cuboids are known in advance. For this purpose at least two sector boundaries
need to be positioned in the measuring range of each sensor. Owing to the special reference object, there is no
need for overlapping of the measuring ranges of adjacent sensors. As in Stoecher et al.,4 due to occlusions, care
has to be taken at the alignment of the reference object. The registration is then performed by assignment of
the measurements of cylinders and cuboids of each sensor to the unique sector boundaries.
In Zhang et al.6 calibration and registration procedures for a multi-sensor system consisting of four cameras
and four to six laser line sources surrounding the measuring object is presented. The cameras have different
measurement ranges in order to provide a multiresolution measurement system. Moreover, the cameras are
adjusted under the Scheimpflug condition to direct their focus on the laser planes. Zhang et al. also assume the
laser planes to be coplanar. For registration of the sensors in a global coordinate system, an Iterative Closest
Point (ICP) algorithm is applied. Therefore the measuring ranges of adjacent sensors have to overlap on the
reference object. As a reference object a cylinder is used. Furthermore, a non-linear technique called empirical



mode decomposition (EMD) is used to improve the results in sense of data merging.
The Iterative Closest Point (ICP) algorithm is a widespread approach for registration of 3D data sets with
unknown point correspondences and different number of points in both data sets. For successful registration,
a good initial guess of the pose is required in order not to get in a local minimum. Over the years, many
modifications of the ICP were developed in terms of selection and matching of points and minimization algorithms
for the rigid body transformation. In Rusinkiewicz et al.7 several ICP variants are compared in terms of
convergence speed. Chetverikov et al.3 propose a trimmed version of ICP, called Trimmed ICP (TrICP), where
the percentage of overlap can either be defined by the user or automatically estimated by minimizing an objective
function.
If the correspondences of two 3D data sets are known, closed-form solutions can be applied to compute the
3D rigid body transformation that consists of a rotation and a translation in 3D space. In Eggert et al.8 four
popular algorithms, based on singular value decomposition (SVD), eigensystem computation and eigensystem
analysis from unit and dual quaternions, are comparative analysed. Differences in accuracy and stability are
only reported for ideal (noise-free) data. However, for practical applications there is only a difference in the
computation time. Each of these algorithms was designed to solve a least squares problem and can be used for
the ICP algorithm mentioned above.
All above presented registration methods for 3D data points meet the assumption that all laser planes are
coplanar or that there exist corresponding points in two data sets, which is particularly the same in the case
of the light sectioning method. For points that have been measured in the same laser plane, this assumption
makes sense. However, in real environment it is nearly impossible to align two laser planes perfectly coplanar
due to six degrees of freedom (DOF) for each sensor, where especially the three rotatory DOF are difficult to
adjust. Because of this fact there will almost never be real corresponding points in two data sets measured by
two laser-stripe sensors. Neglecting this fact can result in errors in the overall model after registration.
Therefore, a new method is developed which considers sensor misalignments as well as intended displacements
and tiltings. The developed method is based on pose estimation and rigid body transformations between the 3D
reconstructed and the triangulated data and provides flexibility regarding to algorithms used for pose estimation
as well as to the used reference object. At the alignment of the reference object it is only to be noted that the
reference object has to be in the measuring volume overlap of the adjacent sensors and intersected by the laser
planes. In this work, as reference object a simple 2D checkerboard pattern is used.

3. NEW REGISTRATION METHOD

In this section the developed registration method is described. In order to obtain the relative 3D orientation
between two adjacent light-stripe sensors, initially a pose estimation technique is used. The estimated poses are
corrupted by uncertainties regarding to limited sensor resolution but mostly by noise1,2 that is affecting on the
feature detection in images. For this reason, the estimated poses are further corrected by use of triangulated
sensor data, which is assumed to be the ground truth. The correction transformations are computed by appli-
cation of rigid body transformations between estimated 3D reconstructions and triangulations of projected laser
stripes on the reference object, minimizing the least squares error with a weighting approach. For the next steps
intrinsic camera and lens distortion parameters for pose estimation as well as algorithms for feature detection of
the reference object and laser stripe detection and evaluation are assumed to be available.

3.1 Pose estimation with a Perspective-n-Point approach

Perspective-n-Point (PnP) is a problem of estimating the pose of a camera in world respectively camera coor-
dinates from a single image. For this purpose, the intrinsic camera parameters, a set of n 3D points in world
coordinates pw

i = [xi, yi, zi]
T and its 2D projections on the imaging sensor ui = [ui, vi]

T in image coordinates,
have to be known. Intrinsic parameters are contained in the camera matrix K3×3, where fu, fv are the focal
length coefficients in u- and v-direction, γ is the shear distortion parameter and cu, cv are the principal image
point coordinates. For real applications, additional lens distortion parameters d = [k1, k2, k3, . . . , p1, p2, . . .],
consisting of radial parts denoted by k and tangential parts denoted by p, have also to be known in order to



undistort the images. Intrinsic camera and the distortion parameters are the results from the camera calibration.

K =

fu γ cu
0 fv cv
0 0 1

 , (1)

The camera pose is defined by extrinsic parameters, consisting of a rotation matrix R3×3 and a translation vector
t3×1. To find this parameters is the aim of the PnP by calculating the depth of given 3D world and 2D image
point correspondences.
In this work the Efficient Perspective-n-Point (EPnP) algorithm,1 a non-iterative PnP approach, is applied.
In contrast to most approaches, in EPnP, n corresponding reference points are expressed as a weighted sum
of virtual control points. For general configurations four control points are required to determine the 3D-2D
projective mapping. In the case of a planar reference object, like the used 2D checkerboard, only three control
points are needed.

pw
i =

3∑
j=1

αijc
w
j , with

3∑
j=1

αij = 1 and i = 1, . . . , n, j = 1, 2, 3 (2)

pc
i =

3∑
j=1

αijc
c
j (3)

Here cj are the control points, where superscripted w and c denote the world respectively the camera coordinate
system and αij represent the homogeneous barycentric coordinates. The projective mapping from 3D world to
2D image coordinates is then defined as

si
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with control points ccj = [xcj , y
c
j , z

c
j ]T turning to unknowns containing the wanted extrinsic parameters R and t,

here expressed as homogeneous coordinates c̃cj
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After further forming steps of equation (4), a linear formulation as Mx = 0 is set up and solved. As a result
extrinsic transformation T4×4 from world into camera coordinates is obtained.
Image data which is located on the 2D reference object can be reconstructed on this plane in 3D using the inverse
camera matrix and the information from extrinsic transformation obtained from EPnP.
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si =
n · t

pn
c
i · n

(8)

Parameter si is the depth of a detected feature point and can be interpreted as a scale factor for each normalized
point pn

c
i which is to calculate for the intersection with the 2D reference plane. Normal vector n of the reference



Figure 1: Deviation between 3D reconstruction (red) using EPnP and triangulated data (green) representing
the ground truth. For both data sets a line fit is performed. Deviations can be seen in the color bar legend by
means of orthogonal projections of the 3D reconstructed line on the triangulated line.

plane is the third column of the estimated rotation matrix R. The results of a 3D reconstructed and a triangulated
laser stripe on the same reference pose are shown in Fig. 1. It can be seen that the 3D reconstruction of the
laser projection based on pure EPnP is distinctly deviating from triangulated data, which is assumed to be the
ground truth.
Applying EPnP with two adjacent sensors on the 2D checkerboard in the same pose, for each sensor an extrinsic
transformation T1 and T2 is obtained. Registration from Sensor1 to Sensor2 can be performed in the form

T12 = T2T
−1
1 . (9)

However, the deviation in the pose estimation has the consequence that the registered data is incorrectly arranged
in the overall model. The impact of the deviation is shown in Fig. 4.

3.2 Computing correction transformation

In order to correct the initially computed poses, a rigid body transformation between reconstructed and trian-
gulated data has to be performed. However, two corresponding lines are not sufficient. Therefore, at minimum
two laser stripes on different poses of the reference object have to be reconstructed and triangulated. Hence,
the reference object is placed in an additional pose and pose estimation as well as 3D reconstruction and trian-
gulation are repeated. While the triangulated data of the projected laser stripes is coplanar, the estimated 3D
reconsruction does not necessarily have to be, due to errors in the pose estimation. For this reason, a weighting
approach is appropriate to minimize the least squares error

error =

n∑
i=1

wi ‖di −Rmi + t‖2 (10)



for the determination of a rigid transformation between two corresponding 3D data sets di and mi. For solving
the minimization function from equation (10), singular value decomposition8,9 (SVD) is applied.
First, triangulated and 3D reconstructed data at the two poses are concatenated each to a common data set,
d and m. Regarding to the two poses, two sets of extrinsic parameters are obtained which can be used for
further correction. Next, the correction based on the first pose is performed. Therefore, weights for the first
triangulated stripe are chosen to 106, while weights for the second stripe remain by 1. This ensures the proper
determination of the correction transformation for the first pose. The corrected transformation from equation
(9) is then defined as

T12corr = T2corrT2T
−1
1 T1

−1
corr. (11)

T1corr and T2corr are the extrinsic correction transformations between the 3D reconstruction from the EPnP
and the triangulated data.

4. RESULTS

The experimental results of the proposed registration method are shown on measurements of a complex shaped
aluminium profile with two light-stripe sensors, shown in Fig. 2. As global coordinate system for the overall
model, coordinate system of Sensor2 is chosen, where the measuring data from Sensor1 is registered. The

Figure 2: Complex shaped aluminium profile as measuring object. Intended laser plane displacements are clearly
visible.

sensors are intended to be misaligned so that there is a significant offset between the laser projections, also seen
in Fig. 2. In Fig. 3a, registration is performed with TrICP3 as example for state-of-the-art methods that are
based on point correspondences in triangulated data. It can be seen that, although there is a clearly visible
displacement between both laser planes, shown in Fig. 2, state-of-the-art registration methods are not able to
detect these sensor misalignments due to the assumption of coplanar laser planes and corresponding points in
two data sets. Registered data from Sensor1 is in the laser plane of Sensor2, what does not correspond to
reality. Fig. 3b shows the registration results with the developed method. As can be seen, the intended sensor
misalignment is detected and data is properly registered in the overall model. In Fig. 4, registration results
with pure EPnP versus the new registration method are shown. It is to be noted that diverging pose deviations
in EPnP occur, which are distorting the overall model, the deviation in translation being much greater than



(a) Registration with TrICP (b) Registration with the new method

Figure 3: Comparison of a state-of-the-art registration method TrICP and the developed registraion method in
measurements with an intended sensor misalignmnet. No sensor misalignments are detected with TrICP (a).
Sensor misalignment detected with the new method (b). Detected sensor misalignments are shown in the color
bar legend by means of orthogonal projections of registered data from Sensor1 to the laser plane of Sensor2.

(a) Registration with pure EPnP (b) Deviation between pure EPnP and the new method

Figure 4: Comparison of the registration results provided by pure EPnP and the developed registration method.
Detected sensor misalignments with pure EPnP (a). Direct comparison of EPnP (blue) with the developed
method (red), deviations between pure EPnP and the new method are shown by means of orthogonal projections
of registered data with EPnP to the plane of the registered data with the new method in the color bar legend
(b).



in rotation. Deviations in the registration with TrICP and pure EPnP in comparison to the new method are
summarized in Table 1. In Fig. 5, Sensor1 is translated by a translation stage by 2mm, 5mm, and 12mm,
Sensor2 remains at the same position. On each position the developed registration method is performed. It can
be seen that the translations are detected and proper arranged in the overall model.

Figure 5: Pure translation of Sensor1 by 2mm, 5mm, and 12mm. Results of the detected sensor translations
and their distributions can be seen in the legend.

Table 1: Deviations in rotation and translation from TrICP and pure EPnP to the developed registration method.
Calculated by means of a (non-weighted) rigid body transformation using SVD. For better comparison, for each
pose the root mean squared error (RMSE) is also given.

∆φx[◦] ∆φy[◦] ∆φz[◦] ∆tx[mm] ∆ty[mm] ∆tz[mm] RMSE[mm]
TrICP -0.486 -0.221 -0.309 2.123 -8.316 0.003 3.320
TrICP ∆ 2mm -0.428 -0.187 -0.282 1.686 -9.448 0.491 5.088
TrICP ∆ 5mm -0.414 -0.189 -0.255 1.752 -12.016 1.440 7.901
TrICP ∆ 12mm -0.505 -0.228 -0.343 2.196 -20.013 3.948 15.347
EPnP 0.184 -0.249 0.160 3.173 2.825 1.107 1.566
EPnP ∆ 2mm 0.305 -0.124 0.288 2.120 4.791 0.504 1.950
EPnP ∆ 5mm 0.299 -0.168 0.277 2.387 4.629 0.742 1.853
EPnP ∆ 12mm 0.183 -0.210 0.160 2.848 2.833 1.006 1.531

5. CONCLUSION

State-of-the-art registration methods for light-stripe sensors meet the assumption that two laser planes of adjacent
sensors are coplanar and that there are corresponding points in two data sets. For this reason, the individual
data sets appear in the same plane in the overall model (Fig. 3a), which does not correspond to reality.
In this work, a new registration method for light-stripe sensors is presented. With the developed registration
method, sensor misalignments and intended displacements and tiltings can be detected and properly registered in
the overall model. The proposed method combines both pose estimation, performed with the EPnP algorithm,



and a weighting least squares approach for the determination of a rigid body transformation to the ground truth
that is given by triangulated data for each sensor. The flexibility of the proposed method is referred to its
generality regarding to other algorithms for the pose estimation like epipolar geometry10,11 as well as to the used
reference objects (2D or 3D) which also can remain geometrical primitive. For example, the poses even can be
estimated by using the direct linear transformation (DLT) and the reference object which are used for camera
calibration in advance. It has only to be cared for that enough information of the reference object is seen in the
overlap of both adjacent camera systems and that laser planes are intersecting the reference object.
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