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1. lntroduction

Determination of a reference plane is essential to svaluation of the technical surfaces
in particular of their roughness. Micro geometrical properties can have significant in-
fluence on the quality of products. This reference plane serves as a basis for quanti-
tative analysis of surface roughness and takes direct effect on the calculation of
roughness parameters. The reference plane represents here the spatial structure of
waviness and long wave form components. ‘

The three-dimensional robust Gaussian regression filter, developed by the Institute
for Measurement and Control, is a powerful method for the calcuiation of this refer-
ence plane. This filter was worked out within the scope of SURFSTAND, a research
project on the subject “The Development of a Basis for 3D Surface Roughness Stan-
dards” supported by the European Community. Starting point was the standardised
2-dimensional profile filter of 1ISO 11562 [1] and the modified Gaussian regression
filter developed by Seewig [2,3]. Applying the regression approach instead of convo-
lution no margin problem emerges. That means the full measured length respectively
the measured area can be evaluated without running in and running out effects of the
filter. Due to the use of a robust algorithm this filter can additionally be employed with
plateau like surfaces, for example plateau honed cylinder liners.

The effect of the robust algorithm on the evaluation of roughness is examined usihg
the bearihg area ratio curve. it will be demonstrated that the robust filter is the better
choice when it comes to approximation of the plateauness of functional stratified sur-
faces. It remains neutral with for example turned or ground surfaces.

2. Concept of the 3-dimensional Gaussian regression filter

21. 2-dimensional Gaussian regression filter

For better clarity in the following the formulation of the 2-dimensional Gaussian re-
gression filter is briefly explained before the 3-D regression filter will be deduced.

Up to now the industrial practice was exclusively characterised by the 2-dimensional
contact stylusinstruments. In order to separate roughness from waviness and long
wave form components the so called Gaussian filter according to ISO 11362 is
nowadays world wide established. The filter mean line derives from the convolution
of the measured surface profile with the symmetrical Gaussian bell curve as the
weighting function. Shifting of the weighting function is equal to a sliding averaging,
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whereby loss of data emerges from running in and -out of the filter. Consequently the
reading of the measured length is shortened. Using the following regression ap-
proach the filter method can be modified in a way that enables the evaluation of the
marginal areas too [2,3,4]:

i

[(2&)-w(@)’ -s(x-&)-d¢ >Min | (1)

P w(x)

In this formulation z(& are the measured profile values, w(x) is the value of the refer-
ence or mean line and s(x-& is the Gaussian weighting function.

Figure 1 shows the filter concept. A measured surface profile with the filter mean line
is plotted. Up in the outline for one selected position of x the Gaussian bell curve is
demonstrated. Below the profile the minimisation approach is visualised. For each
position of the bell curve the level z of a horizontal line w(x=¢) is varied in such a way
that the weighted error square is minimized. For the selected position the black point
marks the reference.
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Fiqure 1: Concept of the 2.dimensional Gaussian regression filter
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As mathematical conclusion of this minimising problem from equation (1) the mean .
line w(xjof the Gaussian regression filter can still be described as c_onvolutional inte-
gral
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but with the adjusted weighting function s,.g(x-& for the Gaussian regression filter.
The area enclosed by the function s.,(x-& is always scaled to one. For locations of x
outside the marginal areas Aco <x <lt—Aco the weighting function s,.(x-& is equiva-
lent to the Gaussian weighting function s(& of the standardised filter in 1SO 11562.

2.2. 3-D Gaussian reqgression fiiter

For the filtering of micro topographies as recorded with 3-D stylus instruments or op-
tical measuring devices like interferometers the formulation from equation (1) is to be
extended by another dimension {2,5].

Ity lix
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As weighting function for the Gaussian probability density function the following
equation is being applied:
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The minimising problem from equation (3} led to a convolution integral for the calcu-
lation of the reference plane as well:
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Filtering along x

Filtering along y

As demonstrated in equation (5), a function vaiue of the reference plane w(x,y) is be-
ing calculated by first carrying out a weighted averaging in x-direction followed by
another one in y-direction. The outcome is, that the 3-D Gaussian regression filter
can be put down to the 2-dimensicnal filter described under paragraph 2.1, and it can
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utilise nearly the same computing algorithms. Combined {0 sgfx-Ey-7) the two
weighting functions from equation (5) come out to:
S(x— Siy—
Sreg(x“é::y_q)'_"hx ( 5) 'lty (y 7])
[ sc-&)-dé [sty-n)-dy
0

0

= Sreg (x-%) Sreg o-n (6)

In Figure 2 the shape of sy, for three selected positions over the measured surface is
demonstrated. At position 1 the weighting function lies midst of the measured surface
and takes on a rotationally symmetrical form. Position 2 and 3 show how the appear-
ance of the weighting function changes in the marginal areas since it is asymmetri-
cally cut off. The condition of the enciosed volume always equalling one appiies for
any position of the weighting function.

D oy
;g‘z,_Posmo_n 3

Figure 2: Shége of the weighting function of the 3-dimensional filter [5]

In order to determine the transfer function S(ico,,Aco,) the range
0.5-Aco, £ x<lx—0.5-Aco, and 0.5-ico, <y<ly—05-ico, is looked at. Taken any

wave front with a wavelength 1. , two new wave fronts with the wavelengths
A, =4, /cos(p) and A, =A1./sin(p) can be put down. Because of the integrals in

Inx Iy
equation (6) I s(x-§&)-dé =1 and j s(y-n)-dgp=1 the transfer function
0 0

S(Aco,,Aco,) is found to be the Fourier transform of the weighting function of equa-
tion (4)

S{Aco,, Aco,)=ex ~2n% . A2, [ Aco? - cos?(p) +Aco 2.sin (@)} A2 ). "N
x ¥ p LP x hid r
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For two different limiting wavelengths Aco. and Aco, the damping of the transfer func-

tion depends on the direction of the wave front. For Aco, = Aco, = Aco, the damping is
independent of the direction of the wave front;

S(/’lco,,)=exp(—2ﬁ-Aip -;Lco}m,?). (8)

The choice of the two cut-off wavelengths is of great importance for sensible adjust-
ment of the filter. If the texture of the surface does not follow a certain direction de-
termined by the manufacturing process, as for example with a sandblasted speci-
men, the two wavelengths can be equal. But if the surface texture does have a visible
direction like a turned or milled surface, the cut-off wavelength must be adjusted ac-
cording to the direction of the waviness.

3. Robust Algorithm

A filter is being called “robust’, as far as so called “outliers” do not lead to a distorted

surface roughness. So for example either drag lines or profile peaks can be declared .
as outliers. Defective spots in optical measuring of the micro topography can be re-

ferred to as outliers toc and may not affect the calculation of the reference plane.

Without additional techniques the Gaussian filter cannot really be called robust [2].

From the field of statistics an algorithm can be taken that extends the Gaussian re-
gression filter described in paragraph 2 to a robust filter [6,7). Basis for the robust
filter is the extension of the arrangement from equation (3) by an additional vertical
weighting &x,y) of each measuring point. Mathematically the definition of this weight-
ing function results from using the Beaton-function within a generalised regression
arrangement [2,4].

This leads to the following new formulated minimiéing probiem:

Itxlty
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00
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As labelled in the equation with the ir;dex i, the robust algorithm is mathematically
being accomplished by an iteration that leads to the reference plane by knowledge of
the previous filtering. The algorithm is shown in fig. 3 as a flowchart.

In the first step the reference level is being calculated by the Gaussian regression
fitter. In this case § =1 applies to all weights. Then the median of the absolute values

I (x, )| = |e(x, »)-w,(x,y)| Is being determined. The weights & calculated by equa-

tion (10) girdie the first filter level with a weighting band for ali surface ordinates. The
parameter ¢z is here the limit count of the robust algorithm given by the Beaton func-
tion.
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First step: 5 (x,y)=1

2 2
_|-(r(=2)
ith iteration: | (57 ){1[ ¢ ” for

<1 (10)

B B

Ot (%, %) =0 otherwise

In order to assess the value limit count ¢z without the influence of-outliers the median
has proofed to be effective [2]. It is estimated cz by :

¢p =4.4-Median |z(x, y)—-w(x, y)| (11)

That means the weights are being adjusted in such a way that the surface ordinates
lying close to the calculated filter level get the maximum weight of one. The other or-
dinates further away than 4.4 times the median get a weight of zero.

These iterations are executed until the reference plane between two iteration steps
" barely changes anymore. The change of the median between two iteration steps is
taken as a measure for this. If the change is smaller than a given tolerance the itera-
tions are being stopped.

i=0 1A%i(xy)
g =1 Vxy
Yy
Calcuiate £ (5.)
e [ ?
w(x,y) 00 i - cj
¥ )
m, = median|z(x, y)-w,(%, )| —» =i+l
A
-Yes No
0 NOY \
'

Figure 3: Robust Algorithm for the 3D Gaussian Regression Filter
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Figure 4: a) ground surface b)plateau honed surface
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4, Effects of the robust Gaussian regression filter on surface parameters

The following two different types of surfaces are discussed in order to examine the
effect of the robust filter in contrast to the non robust Gaussian filter. The first surface
is a ground_surfaée with an approximately symmetric amplitude distribution. The sec-
ond surface is a plateau honed surface with an asymmetric amplitude distribution and
a consequentiy distinct plateau. Figure 4 shows the plots of these two surfaces after
applying robust filtering. For both surfaces the measured areais 4 mm x 4 mm and a
cut-off wavelength Aco, = Aco, =0.8 mm is used.

The effect of the robust filter becomes most distinct by the change of the bearing
area ratio curve of the two surfaces. In the Figures 5 and 6 the curves for the non
robust and for the robust filter and some significant surface parameters are plotted.

Looking first at the ground surface (Figure 5) the resulting bearing area ratio curves
of the both filters lie on top of each other. The robust filter produces nearly the same
filter mean plane as the non robust filter, Also the surface parameters hardly show
any changes. Therefore the evaluation of such a surface is possible utilising both
filters.

Nonro- | Robust

bust filter| filter

2 Sa  bm 0.2 0.2
1S fumj 5.3 5.4

= 118k -0.31 -0.32
= ™ 3.65 3.69
E’ 11 Sk 0.70 0.70
5 {|Sa 1.32 1.32
S 0.14 0.14

s mmermmy | 1a2e3 | 14963

"0 O'%earir?gAarea ?égo [%]0'3 1 S [m'/mm] | 0.33e5 | 033¢8
Sy pm3/mm? | 41.4 e3 41.4¢3

Spk m} 0.91 0.92

Sk [um] 0.74 . 0.74

Sk [om] 0.61 0.57

Eigure 5: bearing area ratio curve and surface parameters for the ground surface

129




In contrast to the ground surface the analysis of the plateau honed surface is very
sensitive to the applied filter. As demonstrated in Figure 6 the position and the form
of the bearing area ratio curves for the two filters are different. The curve correspond-
ing to the robust filter lies below the one of the non robust filier and is flater within the
core area. This indicates that the robust filier leads to a better approximation of the
plateau. Parameters illustrating this effect which characterise the form of the rough-
ness amplitude distribution are the skewness Ssk and kurtosis Sy, Other significant
changes can be seen when transferring the parameter of DIN 4776 {8,9], developed
by Bodschwinna, to 3-D surface analysis. The parameter Sicharacterising the flat
core region drop significantly. Looking at the peaks and valleys the volume parame-
ters Sm, S¢, Sv and the index parameters Sy, Sq, Su proposed by Stout et al. [10,11]
show an expected change. The peak and core parameters drop while there is barley
change to the valley parameters. |

Nonro- | Robust
bust filter| fiiter
’ 118, [m] 1.0 1,0
118t [pm] 15.7 15.7
T Sex 2.1 2.2
= 7
£ Sku 9.0 94
£ 11Su 1.07 1.28
N 118 0.73 0.56
118y 0.21 0.22
_ , X L. YISy fm?/mmy | 17.7 e3 4.3 3
0 0.2 0.4 0.6 0.8 1 m?/ mm? 7
bearing area ratio [%] S b _] 06768 | 0.77¢6
Sv pm*/mmi | 029e6 0.31 €6
Sex fum] 0.59 0.84
S« fum] 1.58 0.93
S [um] 3.58 3.62

Figure 6: bearing area ratio curve and surface parameters
for the plateau honed surface

The influence of the robust filter gets most distinct looking at a profile trace taken
from the plateau honed surface (Figure 7). One can clearly make out that the non
robust filter cannot represent the plateau whereas the robust filter provides a good

closeness.
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Figure 7: Profile plot with the filter mean lines of the robust and non robust filter

5. Summary

The 3-dimensional robust Gaussian regression filter can be used to access the sur-
face roughness of any engineered surfaces. With its regression approach it is able to
handle even smaller measured areas because there is no loss of data in the marginal
areas. The robust algorithm is especially designed for stratified functional surfaces,
but in contrast to DIN 4776 respectively 1SO 13565 [12j this filter can also cope with
peaks on a the measured surface. The mean plane of this filter gives a good estima-
tion of the waviness and long wave form components and it is extremely useful as
reference plane for t]’le_calculation of roughness parameters.
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