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Abstract: Piezoelectric actuators are subject to nonlin-
ear effects when voltage-driven in open-loop control. In
particular, hysteresis and creep effects are dominating
nonlinearities that significantly deteriorate performance
in tracking control scenarios. In this paper, we present
an online compensator suitable for piezoelectric actuators
that is based on the modified Prandtl-Ishlinskii model
and utilizes recursive databases for the compensation of
nonlinearities. The compensator scheme is furthermore
extended to systems with more than one degree of freedom
(DOF) such as Cartesian manipulators by employing a de-
coupling control design to mitigate inherent cross-coupling
disturbances. In order to validate our theoretical deriva-
tions, experiments are conducted with coupled trajectories
on a commercial 3-DOF micro-positioning unit driven by
piezoelectric actuators.

Keywords: Piezoelectric Actuators, Hysteresis, Compen-
sation, Decoupling control

1 Introduction
Piezoelectric actuators are subject to dominant nonlinear
effects such as hysteresis and creep when driven in open-
loop control by a voltage source. While it is possible to
eliminate these effects by black-box control methodologies
such as conventional PID control [1], these approaches are
not able to give insight into the underlying mathematical
model. An ubiquitous amount of models has been proposed
to model hysteresis/creep effects and investigated for their
inversion usability in order to feed-forward compensate
these effects [2]. However, most models are not able to
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(a) Piezoelectric micro-positioning unit

(b) Schematic cross-section of 𝑥-𝑦-plane

Fig. 1: 3-DOF Piezoelectric micro-positioning unit (a) with
schematic cross-section of the 𝑥-𝑦-plane (b).

compensate hysteresis, asymmetric hysteresis, and creep
effects at the same time while retaining online compen-
sation capabilities. The analytically invertible modified
Prandtl-Ishlinskii (mPI) model is able to realize this [3, 4].
To make this approach further robust for non-periodic
trajectories where the ratio between creep and hysteresis
also alters during trajectory execution, the idea of recur-
sive databases was introduced in [5]. While research on
the compensation of piezoelectric nonlinearities has been
ongoing for decades, treating piezoelectric-driven stages
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with multiple degrees of freedom (DOF) is a recent devel-
opment. Therein, the goal is to mitigate cross-coupling
effects that arise in these stages due to mechanical cou-
pling between the axes. Fig. 1 shows such a multi-DOF
piezoelectric-driven actuator. As the cross-section unveils,
the end-effector is attached to multiple piezo-actuators
which directly leads to cross-coupling effects (see Fig. 2).
The cross-coupling compensation was treated for creep
effects [6], for hysteresis effects with the help of the multi-
variate classical Prandtl-Ishlinskii model [7] and the Bouc-
Wen model [8] as well as for compensation in flexure-based
stages by superposition of backlash and deadzone opera-
tors [9]. In [10], a multivariate Hammerstein model was
employed to treat the coupling problem.
Here, a compensation approach including decoupling based
on the mPI model with recursive databases is presented.
The key contributions of this paper are
– Online compensation of nonlinear piezoelectric effects

including asymmetric hysteresis
– Compensation in tracking control scenarios with non-

periodic trajectories based on recursive databases
– Robustness to changes in hysteresis/creep excitation
– Generalization to multi-DOF Cartesian manipulators

by employing a decoupled control approach

Decoupling control strategies can be validated by using
coupled trajectories such as rectangular trajectories [11]
or Lissajous figures [7] and evaluating the normalized
root-mean-square error (NRMSE) of the tracking error
for quantification.
This paper is organized as follows. In Sec. 2, the mPI
model is mathematically outlined. In Sec. 3, the desired
compensator is derived by inverting the model. Further-
more, the decoupling approach is also presented therein.
Experimental verification of the theoretical derivations is
given in Sec. 4. Sec. 5 concludes the paper with a short
summary and future work.

2 Modified Prandtl-Ishlinsikii
Model

The mPI model is comprised of three different operators
that account for the compensation of hysteresis, hysteretic
asymmetry, and creep, respectively. In this paper, we will
only treat the operators in their discrete form. A concise
and brief review of the operators and the resulting mPI
model is given within this section. For more details on
the theoretical background and a thorough derivation,
the interested reader is referred to [3, 5]. Throughout
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Fig. 2: Coupling problem: An excitation only on the 𝑦-axis (de-
sired: black dotted, blue: actual) leads to undesired disturbance
on 𝑥-axis (red).

the remainder of this paper, 𝑥 denotes the input while 𝑦

denotes the output of the operators. Conversely, 𝑦 will be
the compensator input and 𝑥 its output.

2.1 mPI-Hysteresis Operator

The mPI-hysteresis operator 𝐻𝛿[𝑥(𝑘), y𝐻0] models sym-
metric hysteresis behavior. Therein, y𝐻0 are the initial
values. It consists of the weighted summation of elemen-
tary hysteresis operators

𝐻𝑟𝐻 [𝑥(𝑘), 𝑦(𝑘 − 1)] = max{𝑥(𝑘) − 𝑟𝐻 ,

min{𝑥(𝑘) + 𝑟𝐻 , 𝑦(𝑘 − 1)}}

each parameterized by a threshold 𝑟𝐻 indicating its width
(see Fig. 3a). The mPI-hysteresis operator can then be
written in a compact form with weights w𝐻 as

𝐻𝛿[𝑥(𝑘), y𝐻0] = w𝑇
𝐻Hr𝐻 [𝑥(𝑘), y𝐻0]. (1)

2.2 mPI-Superposition Operator

Similarly, the mPI-superposition operator 𝑆𝛿[𝑥(𝑘)] can be
formed by a weighted summation as

𝑆𝛿[𝑥(𝑘)] = w𝑇
𝑆 Sr𝑆 [𝑥(𝑘)] (2)

with weights w𝑆 and elementary superposition operators

𝑆𝑟𝑆 [𝑥(𝑘)] =

⎧⎪⎪⎨⎪⎪⎩
max{𝑥(𝑘) − 𝑟𝑆 , 0} for 𝑟𝑆 > 0
min{𝑥(𝑘) − 𝑟𝑆 , 0} for 𝑟𝑆 < 0
0 for 𝑟𝑆 = 0.

Fig. 3b depicts this operator for three different parameter-
izations. The mPI-superposition operator is able to model
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(a) mPI-Hysteresis Operator
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(c) mPI-Creep Operator

Fig. 3: Schematic illustration of elementary operators responsible for hysteresis (a), asymmetric hysteresis (b), and creep (c) modeling.

asymmetric hysteresis in combination with the aforemen-
tioned mPI-hysteresis operator.

2.3 mPI-Creep Operator

The mPI-creep operator is also computed by a weighted
summation as

𝐾𝛿[𝑥(𝑘), Y𝐾0] = w𝑇
𝐾Kr𝐾 [𝑥(𝑘), Y𝐾0]. (3)

with weights w𝐾 . Therein, the elementary creep operator
𝐾𝑟𝐾 [𝑥(𝑘), y𝐾0(𝑟𝐾)] is defined as

𝐾𝑟𝐾 [𝑥(𝑘), y𝐾0(𝑟𝐾)] = 1
𝑚

𝑚∑︁
𝑗=1

𝐾𝑟𝐾𝑎𝐾 [𝑥(𝑘), 𝑦𝐾0(𝑟𝐾 , 𝑎𝐾𝑗)]

where

𝐾𝑟𝐾𝑎𝐾 [𝑥(𝑘), 𝑦(𝑘), 𝑎𝐾 ] = 𝑦(𝑘) + (1 − 𝑒−𝑎𝐾𝑇𝑠)
· 𝐻𝑟𝐾 [𝑥(𝑘) − 𝑦(𝑘), 0],

is found by solving a differential equation where 𝑎𝐾 are
so-called creep eigenvalues. This operator, capable of mod-
eling creep behavior over time, is shown in Fig. 3c.

2.4 Modified Prandtl-Ishlinskii Model

In order to obtain a unified piezoelectric model, the three
aforementioned mPI operators can be combined as

Γ[𝑥(𝑘), y𝐻0, Y𝐾0] = 𝑆𝛿[𝐻𝛿[𝑥(𝑘), yH0] + 𝐾𝛿[𝑥(𝑘), Y𝐾0]]
= w𝑇

𝑆 Sr𝑆 (w𝑇
𝐻Hr𝐻 [𝑥(𝑘), y𝐻0] (4)

+ w𝑇
𝐾Kr𝐾 [𝑥(𝑘), Y𝐾0])

yielding the final overall mPI model.

3 Online Compensation
In order to compensate the dominating nonlinear effects,
the following measures are necessary. First, the inverse of

the mPI model (4) needs to be established and secondly,
the corresponding weights need to be identified during the
trajectory execution. Afterwards, this single-axis compen-
sation can be augmented with a decoupling design scheme
to mitigate mechanical cross-coupling effects.

3.1 Inverse mPI Model

One of the advantages of the mPI model is that the inverse
can be easily found in an algebraic manner without re-
sorting to a cost-intensive numerical solution as compared
to other approaches. The inverse of the mPI-hysteresis
operator (1) is computed by

𝐻−1
𝛿 [𝑦(𝑘), z′

𝐻0] = w′𝑇
𝐻 Hr′

𝐻
[𝑦(𝑘), z′

𝐻0] (5)

with corresponding inverse weights w′
𝐻 and thresholds r′

𝐻 .
Similarly, the inverse of the mPI-superposition operator
(2) is computed by

𝑆−1
𝛿 [𝑦(𝑘)] = w′𝑇

𝑆 Sr′
𝑆

[𝑦(𝑘)] (6)

with inverse weights w′
𝑆 and thresholds r′

𝑆 . The inverse
weights and thresholds can be found by an algebraic equa-
tion instead of computationally expensive numerical calcu-
lations [3]. With the help of (3), (6), and (5), the inverse
of the mPI model (4) can be computed as

Γ−1[𝑦(𝑘),y′
𝐻0, Y′

𝐾0] = (7)
= 𝐻−1

𝛿

[︀
𝑆−1

𝛿 [𝑦(𝑘)] − 𝐾𝛿[𝑥(𝑘), Y𝐾0], y′
𝐻0

]︀
,

which yields the compensator employed in Sec. 4 for com-
pensation of piezoelectric nonlinearities.

3.2 Optimization with Recursive
Databases

In order to obtain the weights, an optimization problem
needs to be solved online1. The mPI model has the advan-

1 Online refers here to the calculation of the compensator during
the operation of the piezoelectric actuator and not specifically
to any real-time requirements.
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tage that only a quadratic problem with linear inequality
constraints needs to solved. The aforementioned opera-
tors and weights can be conveniently expressed as stacked
vectors

Φ[𝑥(𝑘), 𝑦(𝑘)] =

⎛⎝ H̃r𝐻 [𝑥(𝑘)]
−Sr′

𝑆
[𝑦(𝑘)]

Kr𝐾 [𝑥(𝑘)]

⎞⎠ , w =

⎛⎝ w̃𝐻

w′
𝑆

w𝐾

⎞⎠
for the optimization procedure, where H̃r𝐻 [𝑥(𝑘)] and w̃𝐻

are the mPI-hysteresis operators and hysteresis weight
vector each truncated by their first component. The cost
function is a straightforward derivation from the require-
ment of minimizing the control error

𝐸(𝑘) = 𝑥(𝑘) + w𝑇 Φ[𝑥(𝑘), 𝑦(𝑘)]

and reads as

𝑉 = 1
2

𝑁𝑡−1∑︁
𝑖=0

(𝑖+1)𝑁𝑘∑︁
𝑘=𝑖𝑁𝑘

𝐸2(𝑘). (8)

Therein, 𝑁𝑘 denotes the discrete time interval of a
database (in data points), and 𝑁𝑡 the number of databases
to be used in the compensation process [5]. The cost func-
tion (8) can be conveniently rearranged to a quadratic
function by

𝑉 = 1
2w𝑇

𝑁𝑡−1∑︁
𝑖=0

A𝑖⏟  ⏞  
=:A𝑖+1

w +
𝑁𝑡−1∑︁
𝑖=0

b𝑇
𝑖⏟  ⏞  

=:b𝑇
𝑖+1

w + 1
2

𝑁𝑡−1∑︁
𝑖=0

c𝑖⏟  ⏞  
=:c𝑖+1

with the definition of

A𝑖 =
(𝑖+1)𝑁𝑘∑︁
𝑘=𝑖𝑁𝑘

Φ(𝑘)Φ𝑇 (𝑘),

b𝑇
𝑖 =

(𝑖+1)𝑁𝑘∑︁
𝑘=𝑖𝑁𝑘

𝑥(𝑘)Φ𝑇 (𝑘), and c𝑖 =
(𝑖+1)𝑁𝑘∑︁
𝑘=𝑖𝑁𝑘

𝑥2(𝑘)

in order to enable online computation capabilities. The
weights obtained by this optimization procedure can then
be inserted into the inverse model (7) to function as a
feed-forward compensator2.

3.3 Decoupled Control Design

The aforementioned compensation structure cancels out
nonlinearities for each individual actuator. However, cross-
coupling effects due to mechanical coupling of multi-DOF

2 Additionally, the weights are subject to constraints, which is
out of the scope of this paper and the interested reader is referred
to [3].

Cartesian manipulators are not addressed. For this, an ap-
propriate decoupling strategy is necessary. Fig. 4 depicts
the proposed decoupling scheme of this paper in combina-
tion with the mPI model for input-output linearization.
Assuming that the transfer function of the piezoelectric
actuators G(𝑠) is sufficiently linearized by the presented
compensation strategy (Sec. 3.2 and 3.1), the reference
R(𝑠) can be expressed by the input Y(𝑠) by3

R(𝑠) =
(︂

𝑅1(𝑠)
𝑅2(𝑠)

)︂
= (9)

=
[︂
𝐺11(𝑠) 𝐺12(𝑠)
𝐺21(𝑠) 𝐺22(𝑠)

]︂ (︂
𝑌1(𝑠)
𝑌2(𝑠)

)︂
= G(𝑠)Y(𝑠),

we can follow a linear diagonal decoupling approach with
static-state feedback [12]. The goal is to find a feedback
control matrix C(𝑠) that maps the tracking error E(𝑠)
between reference and desired reference R𝑑(𝑠) to compen-
sator inputs by

Y(𝑠) = C(𝑠)E(𝑠) := C(𝑠) (R𝑑(𝑠) − R(𝑠)) (10)

and diagonalizes the transfer function. This can be
achieved via

C(𝑠) = G−1(𝑠)G𝑑(𝑠),
where G𝑑(𝑠) = diag{𝐺11(𝑠), 𝐺22(𝑠)} is the desired diago-
nalized transfer function matrix. In practical applications,
cross-coupling effects exhibit a low signal-to-noise ratio
(SNR) and therefore the measured output of the piezoelec-
tric actuators needs to be filtered for feedback. This leads
to the tracking error

E(𝑠) = R𝑑(𝑠) − G𝑓 (𝑠)R(𝑠) (11)

with filter transfer function G𝑓 (𝑠) = diag{𝐺𝑓 (𝑠), 𝐺𝑓 (𝑠)}.
Insertion of (11) into (10) and afterwards (10) into (9)
yields the reference transfer function

G𝑟(𝑠) = G𝑑(𝑠)
(︀
I + G𝑑(𝑠)G𝑓 (𝑠)

)︀−1

which attenuates the reference signal by R(𝑠) =
G𝑟(𝑠)R𝑑(𝑠). In order to compensate this, an amplification
transfer function G𝑎(𝑠) = G−1

𝑟 (𝑠) precedes the decoupling
controller.

4 Experimental Results
In order to verify the compensator and the decoupling
control strategy of Sec. 3, experimental results on a com-
mercial micro-positioning unit are provided in this section.

3 Here, the 2-DOF case will be treated due to the experimental
validation in two dimensions. The extension to multiple DOF is
straightforward.
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Fig. 4: Decoupling and compensation scheme for multi-DOF piezoelectric actuators (here exemplified for the 2-DOF case).

4.1 Setup

For experimental validation, we utilize the micro-
positioning unit XYZ200M by Cedrat Technologies (see
Fig. 1a). It is driven by piezoelectric actuators where each
actuator is preloaded by an external elliptical spring shell
made of stainless steel. This not only amplifies the displace-
ment of the piezoelectric actuators by a factor of five but
also protects e.g. against tensile stress. The 𝑥- and 𝑦-axes
follow an antagonistic design (see Fig. 1b), i.e. two op-
posing piezoelectric actuators are employed for each axis,
respectively. This enhances point-symmetry of the hystere-
sis curve but also induces disturbances due to mechanical
cross-coupling, which will be treated by the aforemen-
tioned decoupling strategy. The micro-positioning unit
has a nominal displacement of 200 µm and a nanoscopic
resolution of 2 nm. Voltage input and strain-gauge mea-
surements are commanded and accessed via a National
Instruments real-time system, respectively.

4.2 Identification & Filtering

Identification is done in the frequency domain via a sinu-
soidal sweep and the transfer functions 𝐺11, 𝐺12, 𝐺21, 𝐺22
show almost linear behavior, see Fig. 5. For the control
decoupling approach, each transfer function is approxi-
mated by a first-order all-pass filter. The fitting error in
higher frequencies is caused by the first-order filter design
and because more data points are recorded in the low-
frequency domain. For pick-and-place applications, we are
only interested in trajectories in the frequency range 0 Hz
to 10 Hz.
As mentioned before, cross-coupling effects in piezoelectric

actuators are characterized by a very low SNR. There-
fore, appropriate filter design is crucial in order to yield
satisfying decoupling behavior. In general, a trade-off has
to be made between filter order, phase-lag, and real-time
capabilities. Here we choose a low-order Bessel filter that
on the one hand induces a low phase-lag and on the other
hand its low order avoids real-time violations during the
online filtering process.
Fig. 6 shows the efficacy of using the compensation in com-
bination with decoupling approach. A sinusoidal wave is
applied on the y-axis while the x-axis should show no signs
of excitation. Without control approach and by only using
the compensator, an undesired (albeit small) sine wave
with 180° phase shift can be seen on the x-axis. Adding
the decoupling strategy to the compensator significantly
suppresses this undesired disturbance (SNR ≈ 1.36).

4.3 Coupled Trajectories

For further validation, four coupled trajectories are evalu-
ated in this section:
1. Circle (𝑥 and 𝑦 at 0.3 Hz, ±2 V)
2. Rectangle (𝑥 at ±1 V & 𝑦 at ±2 V, both at 0.25 Hz)
3. Lissajous figure 1 (𝑥 at 0.2 Hz, ±2 V & 𝑦 at 0.6 Hz,

±2 V)
4. Lissajous figure 2 (𝑥 at 0.5 Hz, ±1 V & 𝑦 at 0.25 Hz,

±1 V)

Fig. 7 shows the results in the 𝑥-𝑦-plane for these trajec-
tories as well as close-up views at critical regions. Further-
more, the tracking error over time is depicted for better
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Fig. 5: Bode plots of diagonal transfer functions 𝐺11, 𝐺22 (a) and off-diagonal transfer functions 𝐺12, 𝐺21 (b).
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Fig. 6: Resolved coupling problem (see Fig. 2): Excitation on
one axis leads to less undesired disturbance on other axis by
employing the presented compensation and decoupling scheme.

comparability. For quantification of experimental results,
the normalized root mean square error

NRMSE(𝑦𝑑, 𝑦) = ‖𝑦𝑑 − 𝑦‖2/‖𝑦𝑑‖2

can be evaluated. Based on this metric, Tab. 1 summa-
rizes the experimental results which show that significant
improvements of the tracking error for every trajectory
have been made by adding the decoupling strategy to
the compensation. The highest tracking error reduction
can be observed for trajectories where there is a strong,
permanent, and irregular coupling between the axes (such
as the Lissajous figures). Trajectories where large portions
are uncoupled (such as the rectangular trajectory) show
less improvement.

Table 1: NRMSE of 𝑥- and 𝑦-axis for utilized trajectories without
compensation (NRMSE), compensation without decoupling strat-
egy (NRMSE𝑐), compensation including decoupling (NRMSE𝑐𝑑),
and percentual improvement (Impr.𝑐→𝑐𝑑).

NRMSE NRMSE𝑐 NRMSE𝑐𝑑 Impr.𝑐→𝑐𝑑

𝑥-Axis
Sinusoid 0.1299 0.0263 0.0163 37.88 %
Circle 0.1597 0.0251 0.0171 31.74 %
Rectangle 0.1256 0.0154 0.0112 27.30 %
Lissajous 1 0.1356 0.0224 0.0131 41.39 %
Lissajous 2 0.2082 0.0310 0.0116 62.50 %
𝑦-Axis
Sinusoid 0.1201 0.0331 0.0198 40.01 %
Circle 0.1495 0.0283 0.0146 48.40 %
Rectangle 0.1961 0.0170 0.0165 2.94 %
Lissajous 1 0.1389 0.0322 0.0145 55.11 %
Lissajous 2 0.1851 0.0243 0.0095 60.83 %

5 Conclusion
In this paper, a model-based approach has been followed
for the online compensation of piezoelectric nonlinearities.
By augmenting it with a decoupling controller, mitigation
of mechanical cross-coupling effects could be achieved. The
subsequent experimental validation was executed on a com-
mercial micro-positioning unit. By evaluating the NRMSE
on four different coupled trajectories, significant improve-
ments of the tracking error could be shown. Although the
linear decoupling approach yielded good compensation re-
sults, a nonlinear decoupling approach might improve the
mitigation of cross-coupling effects. Additionally, further
improvement is potentially possible by using a high-order
and adaptive filter.
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Fig. 7: Four different trajectories (circle, rectangle, two Lissajous figures, see left column) with close-up views at critical regions (mid-
dle column), and tracking error (right column). Neither control nor compensation is shown in green, compensation only in blue, com-
pensation with decoupling in red, and the desired trajectory by a dotted black line.
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